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Resumo

Ao longo das últimas décadas a sociedade tem demonstrado cada vez mais preocupação em pro-
mover a inclusão social de pessoas com deficiência. Para isto, mobilidade tem uma importân-
cia fundamental uma vez que está diretamente relacionada com a independência de um indiví-
duo. Equipamentos tradicionais para auxílio de mobilidade como cadeiras de rodas, muletas,
bengalas e membros artificias têm capacidade de auxílio limitado e em muitos casos não são
capazes de prover o auxílio necessário para indivíduos que possuam combinações de deficiên-
cias físicas, cognitivas e de percepção. Neste sentido, cadeiras de rodas inteligentes são tec-
nologias que podem aumentar a autonomia e independência desta população e, atualmente, são
objeto de estudos por vários grupos de pesquisa. Esta tese foi desenvolvida no contexto do Pro-
jeto FCT/RIPD/ADA/109636/2009 – "IntellWheels – Cadeira de Rodas Inteligente com Interface
Multimodal Flexível", e concentrou-se no estudo, projeto e implementação de metodologias que
auxiliem no desenvolvimento de cadeiras de rodas mais robustas e inteligentes. As principais con-
tribuições deste trabalho podem ser divididas em três áreas distintas: robótica de assistência, visão
por computador e localização robótica.

Inicialmente o trabalho descreve os principais conceitos do Projeto IntellWheels. A seguir,
propõe uma metodologia de controle compartilhado baseado na ideia de que a cadeira de ro-
das encontra-se imersa em um campo de forças potenciais. Posteriormente, avaliam-se alguns
dos simuladores robóticos mais populares com o objetivo de identificar o que possui característi-
cas mais adequadas para simulação do protótipo IntellWheels. A última contribuição na área de
robótica de assistência é o projeto de um kit de harware que seja capaz de mitigar o impacto visual
causado pela integração de sensores e atuadores na cadeira de rodas. Os resultados experimentais
demonstraram que a metodologia de controle compartilhado foi capaz de reduzir o número de col-
isões em mais de 75%. A avaliação dos simuladores robóticos indicou que o simulador USARSim
foi o que apresentou o conjunto de características que melhor se adequa aos requisitos do projeto
IntellWheels. Por fim, a análise estatística de uma pesquisa de opinião sugeriu que o protótipo
proposto foi eficaz na atenuação dos impactos visuais e ergonômicos causados pelos dispositivos
adicionados à cadeira de rodas.

Com respeito à área de visão computacional, este trabalho apresentou duas abordagens para
aumentar a invariância à iluminação do algoritmo para detecção de features SURF. As abordagens
propostas tiram respectivamente vantagens de normalização local e descritores baseados em local
space average color para detectar features invariantes à iluminação. Demonstraram-se, através de
uma análise teórica, os efeitos de diversas variações de iluminação na resposta de algoritmos para
detecção de features populares (Harris corners, SIFT e SURF) e como as metodologias propostas
podem corrigir estes efeitos. Os testes e experiências realizados demonstraram a eficácia das
abordagens propostas, aumentando a repetibilidade das features detectadas em cenas com grandes
variações de iluminação em 2.4% com o algoritmo LN SURF e 41.69% com o algoritmo LSAC
SURF.
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Finalmente, o trabalho discute como metodologias baseadas em visão podem aperfeiçoar as esti-
mativas de localização, especialmente em robôs com características particulares como as cadeiras
de rodas inteligentes. A abordagem proposta é baseada em técnicas de odometria visual e câmeras
RGB-D de baixo custo. O algoritmo localiza pontos salientes na imagem e utiliza a informação de
profundidade de cada pixel para estimar a translação e rotação do robô em cada frame. A análise
dos resultados mostrou um erro de posicionamento inferior a 2% para os casos testados, demon-
strando a aplicabilidade do algoritmo de localização em sistemas de navegação de robôs e cadeiras
de rodas inteligentes.



Abstract

Over the last decades society is more and more concerned to promote the social inclusion of im-
paired individuals. For that, mobility plays an important role since the amount of independence
that a person can achieve is closely related to how independently mobile this person is. Traditional
mobility aid devices (e.g. wheelchairs, crutches, canes) are limited, and usually can not provide
the assistance required by individuals with combinations of physical and cognitive or perceptual
impairments. In this sense, intelligent wheelchairs (IW) are devices that can increase the auton-
omy and independence of this population. This thesis was developed in the context of Project
"IntellWheels – Intelligent Wheelchair with Flexible Multimodal Interface", and concerned with
the study, design and implementation of methodologies to support the development of more robust
and intelligent wheelchairs. The main contributions of this work can be divided into three distinct
areas: assistive robotics, computer vision, and robot self-localization.

First, we describe the main concepts regarding the IntellWheels project. Next, we propose
a shared control methodology based on the idea that the wheelchair is immersed in a field of
potential forces. Further, we evaluate some of the most popular general robotics simulators in order
to identify which one is more adequate to simulate the project prototype. Our last contribution in
the area of assistive robotics is a hardware design that aims at reducing the visual impact caused by
the assemblage of sensor and actuators in the wheelchair. Experimental results demonstrated that
the shared control methodology was able to reduce the number of collisions in more than 75%.
The assessment of popular robotic simulators indicated that USARSim was the simulator whose
features better matched the IntellWheels project requirements. Next, the statistical analysis of a
public opinion assessment suggested that IntellWheels design was effective to mitigate the visual
and ergonomic impacts caused by the addition of its sensorial and processing capabilities.

Regarding the computer vision area, we presented two approaches to increase the illumination
invariance of SURF feature detection. The algorithms respectively take advantage of local nor-
malization and local space average color descriptor to detect illumination invariant features. We
performed a theoretical analysis demonstrating the effects of distinct photometric variations on
the response of popular image features detectors (Harris corners, SIFT and SURF), and how our
proposed methodologies can amend those effects. Experimental results demonstrated the effec-
tiveness of the proposed approaches, improving the median repeatability of the features detected
in scenes with large photometric variations in 2.4% for the LN SURF algorithm and 41.69% for
the LSAC SURF algorithm.

Finally, we discussed how vision-based methodologies can improve robotic localization esti-
mations, specially in robots with particular characteristics like intelligent wheelchairs. We also
present a visual odometry approach based on inexpensive RGB-D cameras. The algorithm local-
izes visually salient points, and uses depth information of each pixel to estimate the robot trans-
lation and rotation updates at each frame. Experimental results showed a relative position error
around 2%, demonstrating the applicability of the localization algorithm in the navigation system
of intelligent wheelchairs.

v



vi



Acknowledgements

First of all, I doubt I can properly express my gratitude to Prof. Dr. António Paulo Moreira.
Moreira has been a great source of inspiration and I am very thankful for his continuous encour-
agement, support, patience, and enthusiasm. I am also greatly indebted to my co-advisor Prof. Dr.
Luis Paulo Reis. His supportive attitude, vast scientific knowledge, capacity, and sympathy have
been of utmost importance for finishing my PhD study.

I would like to thank the members of my steering committee, Prof. Dr. Artur Pereira and
Prof. Dr. Paulo Costa, for providing me with valuable feedback on this thesis. Many thanks
to the all members of the IntellWheels project, in special to Rodrigo A. M. Braga, Frederico
Cunha, Sérgio Vasconcelos, Brígida Mónica Faria, João Couto Soares, Abbas Abdolmaleki and
Prof. Dr. Nuno Panelas Lau. Moreover, I acknowledge the (current and former) members of the
Artificial Intelligence and Computer Science Laboratory (LIACC), in particular Rosaldo Rossetti,
João Almeida, Zafeiris Kokkinogenis, Lucio Passos and Nima Shafii, whose scientific discussions
were certainly a plus.

Concerning the non-academic side of my life, I have to thank to a number of people for their
friendship. I will not name you all, but I guess you all know who you are anyway. Yet, I have to
write a special thanks to my two "sons" Leonardo Bremermann and Daniel Faria, and to the best
neighbors in the block Thuane Roza and Guilherme Schmitt. I have also to acknowledge my two
"brothers" Mateus Ferla and Daniel Correa for keeping our friendship updated even at 9000 Km
apart.

A word (in Portuguese) of gratitude to my family: Irene, Jacob, Viviane and Rogerio. Este é
certamente um dos projetos mais importantes da minha vida. Sem o vosso incondicional apoio e
confiança esta tese nunca teria sido possível. As minhas desculpas por me ter ausentado por tanto
tempo.

Last, but certainly not least, I would like to thank my best friend and fiancée Eluana. You made
a fundamental contribution to the development of this work. If I managed to finish this thesis, it is
greatly due to your support and comprehension.

Marcelo R. Petry

vii



viii



“The value of things is not in the time they last, but the intensity
with which they occur. So there are unforgettable

moments, inexplicable things and
incomparable people.”

Fernando Pessoa

ix



x



Contents

1 Introduction 1
1.1 Context . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1
1.2 Motivation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2
1.3 Objectives . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5
1.4 Contributions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6
1.5 Structure of the Thesis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7

2 Background Theory 9
2.1 Theory of Image Formation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9
2.2 Color Spaces . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12
2.3 Illumination Changes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21
2.4 Integral Images . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23
2.5 Image Derivatives . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24
2.6 Gaussian Filtering . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27
2.7 Random Sample Consensus . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31
2.8 Image Features . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31

2.8.1 Harris Corner . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33
2.8.2 Harris-Laplace . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34
2.8.3 Scale-Invariant Feature Transform . . . . . . . . . . . . . . . . . . . . . 35
2.8.4 Speeded Up Robust Feature . . . . . . . . . . . . . . . . . . . . . . . . 36

2.9 Conclusions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 44

3 Intelligent Wheelchairs 47
3.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 47
3.2 Literature Review . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 48

3.2.1 Intelligent Wheelchairs . . . . . . . . . . . . . . . . . . . . . . . . . . . 48
3.2.2 Obstacle Avoidance Methodologies . . . . . . . . . . . . . . . . . . . . 55

3.3 Overview of the IntellWheels Project . . . . . . . . . . . . . . . . . . . . . . . . 56
3.3.1 User Inputs . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 58
3.3.2 Navigation System . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 59
3.3.3 Communication System . . . . . . . . . . . . . . . . . . . . . . . . . . 60
3.3.4 User Interface . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 62

3.4 Hardware Framework Design . . . . . . . . . . . . . . . . . . . . . . . . . . . . 62
3.5 Simulation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 66
3.6 Local Obstacle Avoidance . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 69
3.7 Experiments and Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 72

3.7.1 Obstacle Avoidance Experiments . . . . . . . . . . . . . . . . . . . . . 72
3.7.2 Assessment of Robotic Simulators . . . . . . . . . . . . . . . . . . . . . 77

xi



xii CONTENTS

3.7.3 Assessment of the Visual Appearance of the IntellWheels Prototype . . . 80
3.8 Conclusions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 84

4 Photometric Invariant Feature Detection 87
4.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 87
4.2 Literature Review . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 89

4.2.1 Color Feature Detector and Descriptors . . . . . . . . . . . . . . . . . . 89
4.2.2 Color Constancy . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 91

4.3 Effects of Photometric Variations . . . . . . . . . . . . . . . . . . . . . . . . . . 97
4.3.1 Effects of Photometric Variations in Harris Corners Responses . . . . . . 100
4.3.2 Effects of Photometric Variations in SIFT Responses . . . . . . . . . . . 101
4.3.3 Effects of Photometric Variations in SURF Responses . . . . . . . . . . 102

4.4 Photometric Invariance Through Local Normalization: LN SURF . . . . . . . . 103
4.5 Photometric Invariance Through Color Constancy: LSAC SURF . . . . . . . . . 106
4.6 Experiments and Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 108

4.6.1 Controlled Image Set . . . . . . . . . . . . . . . . . . . . . . . . . . . . 109
4.6.2 Real World Image Set . . . . . . . . . . . . . . . . . . . . . . . . . . . 113
4.6.3 Shift Invariance Experiment . . . . . . . . . . . . . . . . . . . . . . . . 113
4.6.4 Scale Invariance Experiment . . . . . . . . . . . . . . . . . . . . . . . . 117
4.6.5 Color Invariance Experiment . . . . . . . . . . . . . . . . . . . . . . . . 120
4.6.6 Small Photometric Variation Experiment . . . . . . . . . . . . . . . . . 126
4.6.7 Large Photometric Variation Experiment . . . . . . . . . . . . . . . . . 128

4.7 Conclusions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 131

5 Vision-based Localization 133
5.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 133
5.2 Literature Review . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 138
5.3 RGB-D Based Motion Estimation . . . . . . . . . . . . . . . . . . . . . . . . . 145
5.4 Experiments and Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 147

5.4.1 Dataset . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 148
5.4.2 Evaluation Metrics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 148
5.4.3 Experiment Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 150

5.5 Conclusions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 153

6 Conclusions 159
6.1 Main Contributions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 159
6.2 Limitations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 160
6.3 Final Remarks . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 161
6.4 Recommendations For Future Work . . . . . . . . . . . . . . . . . . . . . . . . 162

A Questionnaire: Assessment of IntellWheels Local Obstacle Avoidance 165

B Questionnaire: Assessment of IntellWheels Visual Appearance 171

References 177



List of Figures

2.1 Reflection of light in inhomogeneous materials. . . . . . . . . . . . . . . . . . . 10
2.2 Taxonomy of color spaces. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12
2.3 RGB Color space. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13
2.4 Conceptual relation between the RGB and the HSV model. . . . . . . . . . . . . 17
2.5 Geometric representation of HSV, HSL and HSI color spaces. . . . . . . . . . . . 18
2.6 Box type filter convolution. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25
2.7 Gaussian Filter. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28
2.8 Gaussian derivative in x-direction. . . . . . . . . . . . . . . . . . . . . . . . . . 29
2.9 Gaussian derivative in y-direction. . . . . . . . . . . . . . . . . . . . . . . . . . 29
2.10 Gaussian derivative in xy-direction. . . . . . . . . . . . . . . . . . . . . . . . . 30
2.11 Local pixel neighborhood. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34
2.12 Pyramidal scale-space representation. . . . . . . . . . . . . . . . . . . . . . . . 35
2.13 Box plot filters. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37
2.14 SURF scale-space. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38
2.15 Sequence of the first three Dyy filters of the first octave. . . . . . . . . . . . . . . 39
2.16 Comparison of blob responses in several scales . . . . . . . . . . . . . . . . . . 40
2.17 Non-maximum suppression in a 3x3x3 neighbourhood. . . . . . . . . . . . . . . 41
2.18 Haar wavelet filters. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 42
2.19 Predominant interest point orientation. . . . . . . . . . . . . . . . . . . . . . . . 43
2.20 Feature’s orientation. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43

3.1 IntellWheels Software Architecture. . . . . . . . . . . . . . . . . . . . . . . . . 58
3.2 IntellWheels Multi-level Control Architecture. . . . . . . . . . . . . . . . . . . . 60
3.3 Architecture of the IntellWheels hardware framework. . . . . . . . . . . . . . . 63
3.4 Placement and FOV of the distance sensors. . . . . . . . . . . . . . . . . . . . . 64
3.5 IntellWheels prototype. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 65
3.6 IntellWheels simulator . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 68
3.7 Representation of the repulsive forces acting on the wheelchair. . . . . . . . . . . 71
3.8 Safety distance range acording to the IW’s speed and distance. . . . . . . . . . . 72
3.9 Representation of the closed circuit were experiments were conducted. . . . . . . 73
3.10 Number of collisions per volunteer in the simulated environment. . . . . . . . . . 75
3.11 Number of collisions per volunteer in the real environment. . . . . . . . . . . . . 75
3.12 User’s perception of safety . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 76
3.13 User’s perception of the simulator realism . . . . . . . . . . . . . . . . . . . . . 76
3.14 User’s perception of assistance . . . . . . . . . . . . . . . . . . . . . . . . . . . 76
3.15 Prototypes of ten intelligent wheelchair projects. . . . . . . . . . . . . . . . . . . 81
3.16 Responses about the visual appearance of IW prototypes. . . . . . . . . . . . . . 82
3.17 Original powered wheelchair and the IntellWheels prototype. . . . . . . . . . . . 83

xiii



xiv LIST OF FIGURES

3.18 Responses about the visual changes in the IntellWheels prototype. . . . . . . . . 84

4.1 Samples from the ALCC collection. . . . . . . . . . . . . . . . . . . . . . . . . 110
4.2 Samples from the LIC collection. . . . . . . . . . . . . . . . . . . . . . . . . . . 110
4.3 Samples from the LIS collection. . . . . . . . . . . . . . . . . . . . . . . . . . . 111
4.4 Samples from the LCC collection. . . . . . . . . . . . . . . . . . . . . . . . . . 111
4.5 Real world image set: office environment. . . . . . . . . . . . . . . . . . . . . . 112
4.6 Real world image set: robotic soccer field. . . . . . . . . . . . . . . . . . . . . . 112
4.7 Histogram of SURF repeatability in the LIS collection. . . . . . . . . . . . . . . 114
4.8 Histogram of LN SURF repeatability in the LIS collection. . . . . . . . . . . . . 115
4.9 Histogram of LSAC SURF repeatability in the LIS collection. . . . . . . . . . . 115
4.10 Box plot of the feature repeatability in the LIS collection. . . . . . . . . . . . . . 116
4.11 Median feature repeatability in the LIS collection. . . . . . . . . . . . . . . . . . 116
4.12 Histogram of SURF repeatability in the LIC collection. . . . . . . . . . . . . . . 118
4.13 Histogram of LN SURF repeatability in the LIC collection. . . . . . . . . . . . . 118
4.14 Histogram of LSAC SURF repeatability in the LIC collection. . . . . . . . . . . 118
4.15 Box plot of the feature repeatability in the LIC collection. . . . . . . . . . . . . . 119
4.16 Median feature repeatability in the LIC collection. . . . . . . . . . . . . . . . . . 119
4.17 Histogram of SURF repeatability in the ALCC collection. . . . . . . . . . . . . . 121
4.18 Histogram of LN SURF repeatability in the ALCC collection. . . . . . . . . . . 121
4.19 Histogram of LSAC SURF repeatability in the ALCC collection. . . . . . . . . . 121
4.20 Box plot of the feature repeatability in the ALCC collection. . . . . . . . . . . . 122
4.21 Median feature repeatability in the ALCC collection. . . . . . . . . . . . . . . . 122
4.22 Histogram of SURF repeatability in the LCC collection. . . . . . . . . . . . . . . 124
4.23 Histogram of LN SURF repeatability in the LCC collection. . . . . . . . . . . . 124
4.24 Histogram of LSAC SURF repeatability in the LCC collection. . . . . . . . . . . 124
4.25 Box plot of the feature repeatability in the LCC collection. . . . . . . . . . . . . 125
4.26 Median feature repeatability in the LCC collection. . . . . . . . . . . . . . . . . 125
4.27 Median feature repeatability in the Office collection. . . . . . . . . . . . . . . . 127
4.28 Box plot of the feature repeatability in the Office collection. . . . . . . . . . . . 127
4.29 Median feature repeatability in the Soccer collection. . . . . . . . . . . . . . . . 129
4.30 Box plot of the feature repeatability in the Soccer collection. . . . . . . . . . . . 129
4.31 Comparison between the features detected in the Soccer collection. . . . . . . . . 130

5.1 Typical visual odometry decomposition. . . . . . . . . . . . . . . . . . . . . . . 134
5.2 Feature matching through normalized cross correlation. . . . . . . . . . . . . . . 135
5.3 Decomposition of the proposed RGB-D odometry. . . . . . . . . . . . . . . . . 145
5.4 Sample images from the FR1 xyz sequence. . . . . . . . . . . . . . . . . . . . . 149
5.5 Sample images from the FR2 xyz sequence. . . . . . . . . . . . . . . . . . . . . 149
5.6 Relative pose error: approach with SURF detector. . . . . . . . . . . . . . . . . 151
5.7 Relative pose error: approach with LSAC SURF detector. . . . . . . . . . . . . . 151
5.8 Estimated vs. truth trajectories of the FR1 xyz sequence . . . . . . . . . . . . . . 152
5.9 Relative pose error: approach with SURF detector. . . . . . . . . . . . . . . . . 154
5.10 Relative pose error: approach with LSAC SURF detector. . . . . . . . . . . . . . 154
5.11 Estimated vs. truth trajectories of the FR2 xyz sequence . . . . . . . . . . . . . . 155

B.1 Intelligent wheelchair prototypes . . . . . . . . . . . . . . . . . . . . . . . . . . 174
B.2 Original powered wheelchair . . . . . . . . . . . . . . . . . . . . . . . . . . . . 175
B.3 Intellwheels prototype . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 175



List of Tables

2.1 Example of Integral Image Computation. . . . . . . . . . . . . . . . . . . . . . 23

3.1 A simple longtable example . . . . . . . . . . . . . . . . . . . . . . . . . . . . 53
3.2 Comparison of the robotic simulator’s characteristics. . . . . . . . . . . . . . . . 79
3.3 Wilcoxon test: visual impact of IntellWhells vs other intelligent wheelchairs. . . 81
3.4 Wilcoxon test: visual impact in the IntellWhells prototype. . . . . . . . . . . . . 83
3.5 Wilcoxon test: visual changes by each hardware device. . . . . . . . . . . . . . . 84

4.1 RANSAC: minimum set of points vs number of iterations. . . . . . . . . . . . . 88
4.2 RANSAC: inlier ratio vs number of iterations. . . . . . . . . . . . . . . . . . . . 88
4.3 Summary of the main characteristic of the related works. . . . . . . . . . . . . . 90
4.4 Descriptives of the shift invariance experiment. . . . . . . . . . . . . . . . . . . 114
4.5 Wilcoxon test of the shift invariance experiment. . . . . . . . . . . . . . . . . . 114
4.6 Descriptives of the scale invariance experiment. . . . . . . . . . . . . . . . . . . 117
4.7 Wilcoxon test of the scale invariance experiment. . . . . . . . . . . . . . . . . . 117
4.8 Descriptives of the color invariance experiment. . . . . . . . . . . . . . . . . . . 120
4.9 Wilcoxon test of the color invariance experiment. . . . . . . . . . . . . . . . . . 120
4.10 Descriptives of the color invariance experiment. . . . . . . . . . . . . . . . . . . 123
4.11 Wilcoxon test of the color invariance experiment. . . . . . . . . . . . . . . . . . 123
4.12 Descriptives of the small photometric variation experiment. . . . . . . . . . . . . 126
4.13 Wilcoxon test of the small photometric variation experiment. . . . . . . . . . . . 126
4.14 Descriptives of the large photometric variations experiment. . . . . . . . . . . . 128
4.15 Wilcoxon test of the large photometric variation experiment. . . . . . . . . . . . 128

5.1 Characteristics of the TUM RGB-D dataset sequences. . . . . . . . . . . . . . . 148
5.2 Visual odometry evaluation: approach with SURF feature detector. . . . . . . . . 153
5.3 Visual odometry evaluation: approach with LSAC SURF detector. . . . . . . . . 153

xv



xvi LIST OF TABLES



Abbreviations

2D Two-dimensions
3D Three-dimensions
ACCoMo Autonomous, Cooperative, COllaborative MObile robot
ACL Agent Communication Language
AI Artificial Intelligence
ALOI Amsterdam Library of Object Images
ALCC ALOI illumination color collection
API Application Program Interface
AR Augmented Reality
ATE Absolute Trajectory Error
CAN Controller Area Network
CGM Cubical Gamut Mapping
CIE Commission Internationale de l’Eclairage
CiP Color in Perspective
CORBA Common Object Request Broker Architecture
CRULE Coefficient-Rule
DεC Divide and Conquer
DM Diagonal Model
DoM Diagonal-offset Model
DoF Degrees of freedom
DoG Difference of Gaussians
EDA exploratory data analysis
EKF Extended Kalman Filter
FCT Foundation for Science and Technology
FEUP Faculty of Engineering of the University of Porto
FIPA Foundations of Intelligent Physical Agents
FOV Field of View
FRIEND Functional Robot arm with user-frIENdly interface for Disabled people
GCIE Gamut Constrained Illumination Estimation
GUI Graphical User Interface
GAL Global Agent List
GLONASS Globalnaya Navigatsionnaya Sputnikovaya Sistema
GNSS Global Navigation Satellite System
GP Global Positioning
GPS Global Positioning System
GW Gray World
HMI Human Machine Interface

xvii



xviii ABBREVIATIONS

HSI Hue, Saturation, Intensity
HSL Hue, Saturation, Lightness
HSV Hue, Saturation, Value
ICP Iterative closest point
IDP Inverse Depth Parameterization
IEEE Institute of Electrical and Electronics Engineers
IMU Inertial Measurement Unit
INESC-Porto Institute for Systems and Computer Engineering of Porto
INESC TEC INESC Technology and Science
IntellWheels Intelligent Wheelchair with Flexible Multimodal Interface
IntellSim IntellWheels Simulator
IW Intelligent Wheelchair
JADE Java Agent DEvelopment Framework
LAL Local Agents List
LIACC Artificial Intelligence and Computer Science Laboratory
LCC Light Color Change
LCCS Light Color Change and Shift
LICS Light Intensity Change and Shift
LIS Light Intensity Shift
LME Local Motion Estimation
LSAC Local Space Average Color
MAS Multi-Agent System
MMI Multi Modal Interface
MR Mixed Reality
nRGB Normalized RGB
PDDL Planning Domain Definition Language
PF Potential Field
RANSAC Random Sample Consensus
RDS Microsoft Robotics Developer Studio
RFID Radio Frequency IDentifier
RMSE Root Mean Square Error
RPE Relative Pose Error
SBM Scale by Max
SD Standard Deviation
SFM Structure From Motion
SIFT Scale-Invariant Feature Transform
SLAM Simultaneous Localization and Mapping
SURF Speeded Up Robust Feature
sRGB Standard RGB
USARSim Unified System for Automation and Robot Simulation
VO Visual Odometry
VSLAM Visual Simultaneous Localization and Mapping
WP White Patch
WWW World Wide Web



Chapter 1

Introduction

"Not everything that is faced can be changed, but nothing can be changed

until it is faced."

– James Baldwin

1.1 Context

Physical disability is the general term applied to a group of disabling symptoms that causes limita-

tions over the control of voluntary muscles. The term thus refers to a broad range of impairments

that can be originated at any stage of the human life cycle. During the prenatal stage, period

that extends from conception to the time of birth, the causes of disabilities can involve chromoso-

mal abnormalities (loss, gain, or exchange of genetic material from a chromosome pair), genetic

abnormalities (genes that create damaging biomedical conditions), or result from the prenatal en-

vironment within the uterus (external agents, infections, toxins, and maternal health). During the

perinatal stage, time period immediately before and after birth, causes of disabilities are related

to prematurity, injury, prolonged oxygen deprivation, and infections contracted by the baby in the

birth canal (e.g. syphilis, gonorrhea and herpes). After birth, the main causes of disabilities vary

according to the age of the individuals, but are essentially related to injuries caused by accidents

(amputation, traumatic brain injury, spinal cord injury, etc.), exposure to chemicals and drugs, and

illness (muscular dystrophy, multiple sclerosis, cerebral palsy, etc.).

Nowadays, society is more and more concerned to promote the social inclusion of impaired

individuals. For that, mobility plays an important role, since the amount of independence that a

person can achieve is closely related to how independently mobile they are. In addition to inde-

pendence and self-esteem, some studies reveal that mobility can have positive psychosocial and

cognitive development of physically disabled children, with beneficial effects in the development

and rehabilitation of children with disabilities [1, 2, 3].
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Physically impaired people often rely upon assistive devices such as wheelchairs, crutches,

canes, and artificial limbs to increase, maintain, or improve their functional capabilities. However,

a generalization of the treatment and assistance strategies is hardly achieved since each patient

shows a different combination of symptoms and levels of motor control. Another complication is

that, in many cases, motor disabilities come associated with cognitive and sensorial impairment,

which often lead to driving/navigational problems even when motor impairments are not severe.

Therefore, there is a growing demand for intelligent and safer assistive devices. To accommodate

users who find operating standard mobility devices difficult or impossible, researchers have used

technologies originally developed for mobile robots to create intelligent wheelchairs [4].

In an attempt to address some of these issues, the Faculty of Engineering of the University of

Porto (FEUP) in collaboration with the Artificial Intelligence and Computer Science Laboratory

(LIACC), the INESC Technology and Science associated Laboratory (INESC TEC), the Institute

of Electronics and Telematics Engineering of Aveiro (IEETA), the School of Allied Health Sci-

ences of the Polytechnic Institute of Porto (ESTSP), the University of Minho (UMINHO) and the

Portuguese Association of Cerebral Palsy (APPC) have developed the project IntellWheels. This

thesis is inserted in the IntellWheels project and addresses problems related to the design and

self-localization of intelligent wheelchairs.

1.2 Motivation

The human idea of machines capable of executing different and complicated tasks remounts from

ancient mythology. In fact, stories about artificial people acting as mechanical servants can be

traced back to Greeks and Romans. Since then, countless passages describe fictional robotic char-

acters in the literature and more recently in television and films. Beyond their capacity to solve

problems and to react over the environment to achieve their goals, common to these fictional sto-

ries is how robots appear to navigate with an effortless and vast accuracy.

Unlike fiction, real mobile robot’s navigation is a difficult research problem, in part because it

involves practically everything about robotics: sensing, acting, planning, design, etc. As described

by Murphy [5], the problem of navigation can be summarized into answering three questions

"What’s the best way?", "Where have I been?" and "Where am I?". Answers to the first and

the second questions are related with path planning, mapping and tracking, while to the last one

are related to the robot localization. Indeed, answering the robot position and attitude in truly

autonomous fashion is a challenge that remains nowadays in indoor non-structured environments,

specially when dealing with budget and assemblage restrictions.

Self-localization is essential for mobile robots since it is required at several levels of the sys-

tem. Planners usually express a set of actions in terms of localization, for example "go to that

position", or "turn x degrees". Mapping algorithms usually combine the relative information pro-

vided by proximity sensors (range, bearing) with the current robot’s pose estimation to build and

update global maps of the environment. Controllers require the positioning feedback to correct

the execution of the trajectories provided by motion planners. Robust localization is even more
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important in fields like autonomous transportation, assistive robotics and rehabilitation robotics,

in which robots are expected to not only coexist but also to actively interact with human beings.

Traditionally, mobile robots make use of wheel odometry to assist other absolute position

measurements and provide better and more reliable position estimation. However, since the fun-

damental idea of odometry is the integration of incremental motion information, it inevitably leads

to the accumulation of errors. Particularly, the accumulation of orientation errors implies large po-

sitioning errors, which increase proportionally with the distance traveled by the robot. Wheel

odometry also assumes that all wheel revolutions can be translated into linear displacement rela-

tive to the floor, which may not be entirely true due to systematic and non-systematic errors [6].

Systematic errors are predictable, and caused specifically by the vehicle due to imperfections in

its design or in its mechanical implementation. Common sources of systematic errors are unequal

wheel diameter, differences between the actual wheel diameter and the nominal wheel diameter.

Additional systematic sources of errors include the misalignment of wheels, finite encoder reso-

lution, finite encoder sampling rate, and difference between the actual wheelbase and the nominal

wheelbase. Non-systematic errors, on the other hand, are "imposed" to the vehicle through unpre-

dictable characteristics of the environment. These errors occur when the wheel rotates more than

the predicted, for example when the wheel is forced to travel up or down some irregularity. The

most common non-systematic errors are caused by traveling over unexpected objects and uneven

floors, and by wheel-slippage due to slippery floors, over acceleration, fast turning, interaction

with external bodies, and internal forces like the castor wheels.

In general, the literature refers that systematic errors are particularly severe because they ac-

cumulate constantly. Such idea was disseminated over the years because most robots were de-

signed to operate in smooth indoor surfaces, scenario in which systematic errors indeed contribute

much more to odometry errors than non-systematic errors. In addition to that, until the work of

Borestein [6], there was not a practical method for reducing odometry errors caused by kinematic

imperfections of a mobile robot. Nowadays, on the other hand, a significant part of the robots are

designed to operate in harsher environments, with rough surfaces and significant irregularities. In

these scenarios, though, non-systematic errors are dominant and much more severe because they

cannot be corrected through calibration. This is the case of intelligent wheelchairs whose encoders

are coupled directly in the motor shaft. Unlike other robots that are equipped with solid wheels,

the vast majority of the tires used in wheelchairs are pneumatic inflatable structures, comprising a

donut-shaped body of cords and wires encased in rubber and filled with compressed air. Air filled

tires compress differently according to the weight of the users, yielding a variation in the mean

diameter of the wheels. Furthermore, the position of the user over the wheelchair seat may com-

press the tires differently, which produces unpredictable asymmetric load distribution and unequal

wheel diameters. In wheelchairs, the wheelbase is especially hard to measure because rubber tires

do not present a single contact point with the floor (due to deformation and mechanical characteris-

tics). Due to its unpredictability, such errors, that would be classified as systematic in other robots,

must be considered as non-systematic in intelligent wheelchairs, and thus can not be minimized

with calibration methodologies.
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Therefore, in spite of its simplicity, wheeled odometry methodologies tend to be highly in-

accurate. Indeed, assistive robots need a method for accurately tracking their pose in order to

navigate safely over long distances, uneven surfaces and with asymmetric load distribution. Other

methods based on map matching capture the world through sensors like ultrasounds and infrared,

but are subjected to misreading due to concealment, possible confusion with other robots nearby,

or due to reflectivity and color variations [7].

Other robots rely on Global Navigation Satellite Systems (GNSS), such as the United States

Global Positioning System (GPS), the European Galileo and the Russian Globalnaya Navigat-

sionnaya Sputnikovaya Sistema (GLONASS). The accuracy of these systems are, however, highly

dependent on the position and the number of satellites tracked. GNSS positional data provides low

accuracy in regions where satellites are occluded by the landscape or buildings. The accuracy of

GNSS systems are also dependent on the technology they rely. RTK GPS provides 2 cm accuracy,

Differential GPS provides sub-meter accuracy, while regular GPS sensors provide only a weak

10m accuracy [8].

In this context, vision is an alternative. The use of cameras is recognized for its unique ad-

vantage to deliver multi-layered information. Contrary to navigational sensors such as GNSS and

Inertial Measurement Units (IMU), which provide information only about the vehicle’s own mo-

tion with respect to the inertial frame, vision can provide additional information relative to the

environment. For example, with vision is possible to estimate how close the vehicle is to an ob-

stacle, whether targets appear in the environment or how the vehicle is aligned with the horizon.

Unlike GPS, which stops working in the shadow of satellite visibility, vision works in cluttered

indoor environments as long as the captured images have sufficient texture and illumination. Ad-

ditionally, different from shaft encoders, vision-based localization methodologies do not depend

on wheel-terrain interactions, eliminating several sources of systematic and non-systematic er-

rors [7, 9, 10]. At last, the inherent ability of stereo cameras to gather 3D information of the

environment allows us to express the robot state in the full 6 degrees of freedom (DoF) of the

Euclidean motion model [5, 11, 12].

The constant reduction in the size of robotic platforms leaded to the necessity of changing from

high power consumption, heavy and bulky sensors to others with better information-to-weight ra-

tio. Many applications that could benefit from the camera’s light weight, includes people local-

ization and environment modeling in rescue operations - cameras can be easily adapted to helmets

used by rescuers, or simply worn by soldiers and fire-fighters. Furthermore, it is very attrac-

tive for tracking small flying vehicles, telepresence solutions (head motion estimation using an

outward-looking camera), augmented reality (AR) environments (camera’s small size facilitate its

attachment into AR displays) and television (camera motion estimation for live AR). Cameras are

thus well adapted for embedded systems and often pre-integrated into mobile computing devices

such as PDAs, phones and laptops [9, 10, 11, 13].

On the other hand, vision captures the geometry of its surrounding environment indirectly

through photometric effects – reason why it is not easy to turn the sparse sets of features from

an image into reliable long-term landmarks. Camera images may be noisy and scene-dependent,



1.3 Objectives 5

and under some circumstances, the computed probabilistic models can be biased, overconfident,

or subject to other numerical challenges [9, 14].

1.3 Objectives

The aim of this thesis is to contribute to the development of intelligent wheelchairs by proposing

new hardware designs and computer vision methodologies. The main hypotheses addressed in this

thesis are:

It is possible to design an intelligent wheelchair to assist severely handicapped individuals us-

ing low cost off-the-shelf devices without interfering with the normal operation of the power

wheelchair, and with reduced visual impact.

The use and extension of current vision-based methodologies can provide robust localization for

intelligent wheelchairs.

In order to verify these statements, the following intermediate objectives were defined:

• Review relevant work in the field of assistive robotics and intelligent wheelchairs.

• Propose and implement a hardware framework to provide sensing and processing capabili-

ties to regular powered wheelchair, concerning with the user limitations and with the normal

wheelchair operation.

• Assemble the proposed hardware framework in a regular powered wheelchair, perform ex-

periments and validate the design.

• Review relevant vision-based localization methodologies and related works.

• Propose and implement novel methodologies to improve vision-based localization in real-

world conditions.

• Develop a flexible interface to enable visual debugging and feedback about the local features

used to estimate localization.

• Validate the proposed approaches with a controlled image set, as well as with real-world

environmental conditions (i.e. in the presence of multiple illumination sources, variations

in intensity and color).

• Develop a vision-based motion estimation algorithm.

• Validate the proposed motion estimation through experiments with real-world conditions.
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1.4 Contributions

This thesis makes the following contributions to the field:

• Conceptualization and development of a modular platform for the development of intelligent

wheelchairs. This work led to four publications [15, 16, 17, 18].

• Definition and design of a user-centered hardware framework for intelligent wheelchairs.

The contribution of this work concerns the mitigation of the visual and ergonomic im-

pacts caused by the addition of sensing and computational capabilities. Another contri-

bution is compatibility of the hardware framework to multiple models and brands of pow-

ered wheelchair, facilitating the conversion of regular powered wheelchair into intelligent

wheelchairs. Although the concept of the Intellwheels flexible hardware framework had

been published before [19], the current hardware framework was a contribution of this work.

This work was submitted to one publication [20].

• Assessment of a robotic simulator to assist the selection of the general purpose simulator

that better matches the requirements of the IntellWheels project. This work led to one

publication [21].

• Development of a shared control methodology that is effective to avoid collisions, and yet

simple enough to run in real-time in embedded systems with limited computational capabi-

lity. This work led to one publication [22].

• Development of an extension of SURF feature detector with invariance to large photometric

variations. Unlike other authors that perform color space mapping to deal with illumination

changes, in this approach we normalize the variables used to compute filter responses. Thus,

it is possible to compute invariant feature responses over regular RGB images. The contri-

bution of this work consists on the combination of the local normalization (LN) technique

with feature detection algorithms to enhance their photometric invariance properties.

• Development of a method to extend SURF feature detector invariance properties. The nov-

elty of the method resides in the combination of the color constant working space pro-

vided by the LSAC descriptor with the SURF feature detection. The inclusion of this pre-

processing step adds a small computational load to the overall algorithm, but it proved to

provide a significant increase in feature detection invariance. This work led to one publica-

tion [23] and one submission [24].

• Development of a visual odometry algorithm to estimate robot’s trajectory. The algorithm

is based on affordable RGB-D cameras. It uses the RGB image to detect and match vi-

sual features over consecutive frames. Through depth information, the algorithm estimates

the 3D position of each feature matched and computes the motion that better explains the

transformation. This work was submitted to publication [25].
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Besides these contributions, the work presented in this thesis also allowed the dissemination

of the IntellWheels project through the mass media, as well as through other international scien-

tific publications in the areas of Modeling and Simulation, Artificial Intelligence, Robotics and

Assistive Technologies. The IntellWheels project was also distinguished by several associations

with the attribution of four prizes in the areas of Social Inclusion, Assistance and Robotics.

1.5 Structure of the Thesis

The remainder of this thesis is organized as follows:

Chapter 2 presents the thesis background. Different concepts, tools and methodologies that will

be frequently used in the course of this work are presented in detail.

Chapter 3 introduces the concept of intelligent wheelchairs and a comprehensive literature review

of the main intelligent wheelchair projects. The chapter also presents the IntellWheels project,

which was the basis for the integration of the methodologies developed in this thesis. To ad-

dress some of the IntellWheels requirements, we describe our user-centered hardware design, the

requirements and assessment of robotic simulators and an obstacle avoidance methodology.

Chapter 4 presents a literature review regarding the color feature detectors and constancy method-

ologies. A mathematical formalization demonstrate the effects of illumination changes in the re-

sponse of popular feature detectors. Next, we propose and evaluate two methodologies to provide

local feature detectors with invariance to large photometric variations.

Chapter 5 shows an application of the proposed photometric invariant methodology to the prob-

lem of visual odometry. We describe our motion estimation method and give two examples of

robot trajectory recovery using, as only input, images provided by a camera.

Chapter 6 summarizes the main conclusions and contributions of this thesis. In addition, reflec-

tions about the limitations and some future perspectives are discussed.
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Chapter 2

Background Theory

This background chapter aims at introducing the different concepts dis-

cussed in the course of this thesis. Some definitions and methodologies

that will be frequently used in this work are presented in detail. First, we

will introduce the image formation theory used to model the interaction of

light with a surface, in terms of the properties of the surface and the na-

ture of the incident light. Next, we review the main mathematical models

used to describe the way colors can be represented. Section 2.3 presents

the model used throughout this document to represent variations in the in-

tensity and color or the scene illumination. Section 2.4 describes an inter-

mediate image representation employed to reduce the computational cost

of convolution operations with rectangular filters. Section 2.5 describes

the solution adopted to compute the image partial derivatives. Section 2.6

presents a definition of the Gaussian kernels, how they can be computed

and their advantages in the computer vision context. Section 2.8 discusses

the computational theory used to model salient image details, and the de-

sired properties that these models should hold. Finally, the summary and

conclusions of this chapter are presented in Section 2.9.

2.1 Theory of Image Formation

Some bodies like the sun and electric light filaments are able to produce the electromagnetic radi-

ation in the range detected by the humans eyes (luminous objects). These wavelengths typically

ranges from 0.43µm (violet) to about 0.79µm (red), and are called visible light. Once most objects

are not able to produce light, they are only visible through the reflection of light rays emitted from

other luminous objects (light sources). Reflection is a fundamental physical phenomenon and cor-

responds to a change in the direction of the light propagation. It can be classified as specular or

diffuse according to the nature of the surface material.

9
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Figure 2.1: Reflection of light in inhomogeneous materials (adapted from [26]).

In the case of specular reflections, most of the incident light is reflected off the surface in a

single direction. The direction of the reflected ray can be estimated through the second law of

reflection, which states that the angle between the reflected ray and the surface normal equals

the angle between the normal and the incident ray. Specular reflections occur more intensely in

optically homogeneous materials like mirrors, metallic objects and other shiny and highly polished

surfaces, because the incident ray is not able to penetrate through the surface interface.

On the other hand, diffuse reflection occurs mainly in materials that are optically inhomoge-

neous. When a light ray hits an inhomogeneous surface, it must pass through the interface between

the air and the surface medium. Once the index of refraction of the surface medium and the index

of refraction of the air are different, part of this light energy is reflected at the interface as a local

specular reflection (Figure 2.1). Here we refer to local specular reflection because materials that

are optically rough do not present a macroscopic or reference surface normal, but instead they

present a number of different microscopic surface normals that significantly varies from point to

point. The remaining light energy penetrates the interface, passes through the medium and is dis-

persed by the colorant. At this point, the light energy can be either: absorbed by the colorant;

re-emitted through the interface, producing body reflection; or transmitted through the material,

when this material is translucent.

The geometric distribution of the body reflection is sometimes assumed to reflect light evenly

in all directions. Such isotropic surfaces are known as Lambertian surfaces, because they pre-

serves the Lambert’s cosine law, which states that the reflected light intensity in any direction of a

perfectly diffusing surface varies as the cosine of the angle between that direction and the normal

vector of the surface. Therefore, the luminance of that surface is the same regardless of the view-

ing angle. Although very few natural surfaces are truly Lambertian, many common materials can

be described as near-Lambertian at moderate angles, including concrete, asphalt, varnishes, paper,

ceramics, plastics and most paints.

Assuming that a scene contains surfaces which exhibits Lambertian reflectance properties, its

resulting image I can be modeled as a function of the irradiance F(λ ,xi) falling onto an infinites-

imal small patch on the sensor array, as given by the equation:
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I(xi) =
∫

F(λ ,xi)p(λ )dλ (2.1)

where p(λ ) is the camera spectral sensitivity of wavelength λ , and xi is the object location xob j

expressed in the image coordinate frame. For a Lambertian surface, which reflects light equally

in all directions, the irradiance can be described in terms of the light spectral power distribution

E(λ ,xob j) and the surface reflectance S(λ ,xob j).

F(λ ,xi) = E(λ ,xob j)S(λ ,xob j) (2.2)

Thus, the intensity I measured by the sensor in the location xi is given by

I(xi) =
∫

E(λ ,xob j)S(λ ,xob j)p(λ )dλ (2.3)

Although each sensor responds to a range of wavelengths, the sensor is often assumed to

respond to the light of a single wavelength. Thus, one can approximate the sensor response char-

acteristics by Dirac’s delta functions, as given by:

pk(λ ) = δ (λ −λk) (2.4)

where k ∈ {R,G,B}. Through the former assumption, it is possible to simplify the Equation (2.3)

and express the intensity Ik(xi) measured by the sensor k in the position xi as:

Ik(xi) = E(λk,xob j)S(λk,xob j) (2.5)

In [26], Shafer argues that the model described by the Equation (2.3) presents severe limi-

tations because it assumes that the illumination at any point comes from a single light source.

Shaffer states that a more realistic model may consider the illumination as a combination of the

light source and the ambient light. This ambient light can be defined as an isotropic light of lower

intensity than the light source (and possibly with a different spectral power distribution), that can

come from the scattering of the white light source, objects highlights, infra-red sensitivity of the

camera sensor and inter-reflections of walls and other objects. Thus, taking advantage of the linear

properties of the spectral projection, Shaffer extends the model by adding a diffuse term A(λ ):

Ik(xi) =
∫

E(λ ,xob j)S(λ ,xob j)pk(λ )dλ +
∫

A(λ ,xob j)pk(λ )dλ (2.6)

However, the assumption that the ambient light is equal in all directions implies that the dif-

fuse term is independent of the surface and of the spatial coordinate xob j. When computing the

partial derivative of I, the effect of A(λ ) is canceled. Therefore, the reflection model of the spatial

derivative of the image I at xob j on the scale σ can be described as:

Ik(xi) =
∫

E(λ ,xob j)Sσ (λ ,xob j)pk(λ )dλ (2.7)



12 Background Theory

Chromatic Achromatic

Binary GrayscaleCIE RGB
sRGB
nRGB

HSV
HSI
HSL

XYZ

CIE L*u*v
CIE L*a*b

Opponent

Image Representation
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2.2 Color Spaces

Color is a subjective human sensation produced when the electro-magnetic radiation in the range

of 430 nm (violet) to about 790 nm (red) reaches the human eye. Extensive experimental studies

provide evidence that human eyes have around 6 to 7 million photoreceptors (called cone cells) re-

sponsible for color perception, which can be classified in three groups according to the wavelength

range they are capable to sense.

The L cones have sensitivity in the range of long optical wavelengths (500–700 nm), and are

responsible for the sensation that humans call red. The M cones have sensitivity in the range of

middle optical wavelengths (450–630 nm), and are responsible for the sensation we call green.

Finally, the S cones have sensitivity in the range of short optical wavelengths (400–500 nm), and

are responsible for the sensation of blue.

The ability to perceive colors through the interaction of three types of color-sensing cone cells

is the physiological basis for the trichromatic theory of color vision, which suggests that any color

sensation in the visible band of the electromagnetic spectrum can be created by mixing three

primary spectra (tristimulus values).

For this reason, describing colors accurately is utmost important when working with colors

in computer vision methodologies. It requires a standard system to convert the physical stimulus

(spectral radiance) into a mathematical representation. Any methodology used to associate the

tristimulus values with each color is called a color space. Several different color spaces were

proposed in the literature in order to deal with different purposes, some aiming to mimic the

human vision system, others to comply with the way electronic monitors reproduce colors and

others to describe how humans understand the colors (Figure 2.2).

CIE RGB

The CIE RGB color space was created to model the way humans perceive colors [27]. In this

model, each color appears in its primary spectral components of red (R), green (G) and blue (B).

Each of these three components corresponds to a filtered spectral mapping from image space to a

3-D sensor space [28]. The model that describes this transformation was discussed in Section 2.1,
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Figure 2.3: RGB Color space: points along the main diagonal have gray values.

and can be summarized through the Equation (2.3). All colors that can be created can therefore

be represented within a cubic volume, positioned in the positive octant of a three dimensional

Cartesian system whose axes are the RGB primaries (Figure 2.3). The different colors in this

model are points inside the cube, and are defined by vectors extending from the origin.

Grayscale

Grayscale images are monochromatic images that carry only intensity information. Distinctly

of the binary images, they can represent many shadows of gray in-between the black and white.

Grayscale images often result of measuring the intensity of light at each pixel in a single band of

the electromagnetic spectrum (e.g. infrared, visible light, ultraviolet, etc.). For those cases where

grayscale images are synthesized from full color image, the luminance is calculated as a weighted

sum of the three linear-intensity values given by:

IG(x,y) = 0.299R+0.587G+0.114B (2.8)

Binary

Images that are void of color are called achromatic/monochromatic, because their only attribute

is intensity. Binary images are digital images that can have only two values 0,1 to describe the

intensity of each pixel. For this reason, they are stored in a single bit and are commonly called

black-and-white images. Such images often occur after a thresholding operation of grayscale

images.

IB(x,y) =

{
1 if IG(x,y) > T

0 else
(2.9)
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sRGB

sRGB is a RGB color space proposed by a group of private companies to approximates the color

gamut of the most common computer display devices. This specification allowed sRGB to be

directly displayed on typical CRT monitors of the time, which greatly aided its acceptance. The

sRGB color system is defined from the XYZ color system, so that the sRGB tristimulus values

for an illuminated object of a scene are simply linear combinations of the CIE XYZ values: (0.64,

0.33, 0.03) for the R light, (0.30, 0.60, 0.10) for the G light, (0.15, 0.06, 0.79) for the B light. The

(x,y,z) coordinates of its reference white are those of the CIE standard illuminant D65, namely

(0.3127, 0.3290, 0.3583). The transformation from the XYZ space into sRGB can be described

by:

sR

sG

sB

=

 3.2419 −1.5374 −0.4986

−0.9692 1.8760 0.0416

0.0556 −0.2040 1.0570


X

Y

Z

 (2.10)

Reversely, the conversion from the sRGB space into XYZ may be expressed through:

X

Y

Z

=

0.412453 0.35758 0.180423

0.212671 0.71516 0.072169

0.019334 0.119193 0.950227


sR

sG

sB

 (2.11)

XYZ

One of the main limitations of the RGB color space is that it can not represent all colors the

average human can see. In order to encompass these colors the RGB components would have

to, for instance, assume negative values. To address this problem, the Commission Internationale

de l’Eclairage (CIE) proposed in 1931 the CIE XYZ color space. This model is based on three

artificial primaries, XYZ, that do not correspond to any real light wavelength, but that can represent

all visible colors by using only positive values. The Y primary is intentionally defined to match

closely to luminance, while X and Z primaries give color information. CIE XYZ is a commonly

used standard, and serves as the basis from which many other color spaces are defined. Its main

advantage when compared to other color systems consists in the fact that it is completely device-

independent. The transformation from CIE RGB to CIE XYZ can be mathematically expressed

through:

X

Y

Z

=

2.769 1.752 1.130

1.000 4.591 0.060

0.000 0.057 5.594


R

G

B

 (2.12)
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nRGB

The normalized RGB color space (nRGB) is an attempt to separate the light intensity to process

color information independently from varying lighting levels. The red, green, and blue compo-

nents of nRGB can be obtained by dividing each component of the RGB space by the sum of

the three components. Note that as r+g+b=1 only two components are enough to define a color.

Such space is independent of uniformly varying lighting levels and provides a relative robustness

in certain types of illumination changes. The transformation from the RGB space into nRGB can

be described by:

r =
R

R+G+B

g =
G

R+G+B

b =
B

R+G+B

(2.13)

HSV

In addition to the high correlation of the three primaries, RGB, XYZ and other linear color spaces

are not well suited to describe colors in terms that are practical for humans to interpret. In fact,

when required to describe colors, humans make use of other attributes like hue, saturation and

intensity. Historically, in the beginning of the 19th century the professor and artist Albert Henry

Munsell [29] proposed the use of three subjective parameters (hue, value and chroma) to describe

colors according to what he felt that most closely reflect the perceptions of human observers. Later,

based on Munsell’s work, related color models were proposed to decouple the intensity compo-

nent from the color carrying information, like the HSI (hue, saturation, intensity), the HSV (hue,

saturation, value) introduced by Smith in [30], and the HSL (hue, saturation, lightness) presented

by Joblove and Greenberg in [31]. Although these color spaces have a different mathematical def-

inition for each attribute, they share a very close conceptual definition. In Munsell’s color space

and in its variants, the hue component defines the color itself. It is the attribute associated with the

dominant wavelength in a mixture of light waves, and represents the dominant color perceived by

the observer. The values for the hue axis vary from 0 to 360 beginning and ending with red and

running through green, blue and all intermediary colors. Saturation refers to the relative purity

of a light wave. It is the amount of white light mixed with a hue, and indicates its colorfulness

(difference between the hue against gray) in the color space. The pure spectrum of colors is fully

saturated. The degree of saturation is inversely proportional to the amount of white light added.

The values for the saturation range from 0 to 1, indicating respectively no color saturation and

maximum saturation of a given hue at a given illumination. The value component - lightness

(HLS) or intensity (HSI), shows the amplitude of light, indicating the illumination level. It is a

subjective, non-quantitative reference to physiological sensations and perceptions of light, which

relates to the achromatic notion of intensity. Both vary from 0 (black, no light) to 1 (white, full

illumination).
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HSV and its related models can be derived from the RGB space through geometric strategies.

This becomes clear when we tilt the RGB color cube on the Cartesian coordinate system, posi-

tioning the black vertex at the origin (0,0,0) and the white vertex above it along the vertical axis

(0,0,1)(Figure 2.4A). Representing the achromatic diagonal of the RGB cube coincident with the

vertical axis of the Cartesian space it is possible to determine the illumination level of any point

through the plane that is perpendicular to the vertical axis and that contains the point. Further-

more, it is possible to describe the colors decoupling the illumination component by projecting the

RGB color cube into the xy plane, which presents intensity value zero and is therefore referred to

as chromatic plane. The position on the plane gives information about the chromaticity of a pixel.

In the chromaticity plane, primary colors are separated by 120 ◦, while secondary colors are 60 ◦

apart from the primaries. Through the chromaticity plane, both hue and saturation can be defined

with respect to the hexagonal shape of the projection. Mathematically, the transformation from

the RGB to the HSV space is given by:

M = max(R,G,B)

m = min(R,G,B)

V = M

S =

{
(M−m)/M if M 6= 0

0 otherwise

H =


Unde f ined if s = 0

60(G−B)/S if M = R

120+60(B−R)/S if M = G

240+60(R−G)/S if M = B

(2.14)

The hue of a point is considered as the angle from the reference line, which usually is desig-

nated by the red axis as indicated in the Figure 2.4B. The hue increases counterclockwise from the

reference and ranges from 0 ◦ to 360 ◦ (i.e. the hue of the blue color is 240 ◦, of the yellow is 60 ◦

and of the green is 120 ◦). The saturation component is the radial distance to the achromatic axis

(the length of the vector to a given point in the color space). Finally, the intensity is the height in

the vertical axis direction, and describes the gray levels, from zero (no illumination – black) to one

(maximum illumination – white). Colors in the HSV model are defined with respect to normalized

the red, green, and blue values, so that each component may be divided by 255 to convert them to

the range [0,1]. The conversion may also include a reverse gamma correction to first yield these

intensities.

The HSI color system has a good capability of representing the colors of human perception,

because human vision system can distinguish different hues easily, whereas the perception of

different intensity or saturation does not imply the recognition of different colors [27]. The

transformation to the HSL cylindrical space is defined through the RGB space
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Figure 2.4: Conceptual relation between the RGB and the HSV model: the tilted RGB cube (A)
and the projection of the colors into the xy plane (B).

M = max(R,G,B)

m = min(R,G,B)

I =
R+G+B

3
S = 1− m

I

H =


60(G−B)/S if M = R

120+60(B−R)/S if M = G

240+60(R−G)/S if M = B

(2.15)

When considering all the colors that can be represented, the HSV color space may be geo-

metrically represented as a cone, but once the RGB space has a more limited subset of colors the

geometry that better bounds this color space is the hexagonal cone (Figure 2.5). Each slice of the

cylinder perpendicular to the intensity axis is a plane with the same intensity.

Similar to the HSV, when considering all the possible colors that can be represented, the HSL

color space may be described as a cylinder, where the coordinates r, σ , z correspond, respectively,

to the values of saturation, hue and intensity. However, when considering just the colors that

can be represented in the RGB cube, this color space is better represented by a double hexcone

(Figure 2.5). Just as the previous color spaces, the HSI space may be geometrically represented

by a cylinder, but as the HSL, it is better represented by a double hexcone when only the colors

represented at the RGB color space are considered.
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HSV

HSL
HSI

Figure 2.5: Geometric representation of HSV, HSL and HSI color spaces.

M = max(R,G,B)

m = min(R,G,B)

L =
M+m

2

S =


M−m
M+m

if L < 0.5
M−m

2−M+m
if L ≥ 0.5

H =


60(G−B)/S if M = R

120+60(B−R)/S if M = G

240+60(R−G)/S if M = B

(2.16)

Opponent

The opponent color space theory states that the three signals produced by the cone cells present in

the retina are converted into three channels (O1,O2,O3) before been transmitted to the brain. O1

is the chromatic red/green component, and is derived by differencing data from the red and green

cones. O2 is the chromatic yellow/blue component, and is derived by differencing the values from

the luminance channel (yellow = red + green) and the blue cones. Finally, the intensity information

is represented by the O3 component, which is an achromatic channel created by summing the
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excitation from red and green cones [32], Equation (2.17).

O1 =
R−G√

2

O2 =
R+G−2B√

6

O3 =
R+G+B√

3

(2.17)

The chromaticity coordinates O1,O2 can be represented in polar coordinates by the saturation,

and corresponds to the Euclidean distance from the lightness axis. The hue angle h, expressed in

degrees starting from the positive O1 axis (red) and turning in an anti-clockwise direction, can be

described by the Equation (2.18).

H = arctan
O1

O2

S =
√

O2
1 +O2

2

I = O3

(2.18)

CIE L*a*b* and CIE L*u*v*

The ability to express color difference in a uniform scale is a significant characteristic that is not

achieved even by popular spaces like RGB, sRGB, Nrgb, XYZ, HSV, HSL, HSI. Thus, it is not

possible to evaluate the similarity of two colors from their Euclidean distance. In order to match

the sensitivity of human eyes with computer processing CIE introduced the CIE L*a*b* [33] (also

called CIELAB) and CIE L*u*v* (also called CIELUV) color spaces [27]. These color models

are both uniform derivations from the standard CIE XYZ space, and can be represented through

the uniform chromaticity scale (UCS). The UCS is a diagram that uses a non-linear transform and

weighting of the XYZ values to derive a two-dimensional model that approximates the perceptual

uniformity property.

CIELAB and CIELUV are opponent color spaces described in three dimensions, which rep-

resent lightness of the color L*, the difference between red and green (a* for CIELAB or u* for

CIELUV), and the difference between yellow and blue (b* for CIELAB or v* for CIELUV). The

Y component from the XYZ color space is a linear scale of lightness with equal steps between

each value. Since humans have more ability to differentiate variations when they occur in higher

intensities than in lower intensities, this kind of scale is not adequate to represent differences in

lightness that are visually equivalent. For example, a difference between values of 10 and 15 on

the Y lightness scale differ by the same magnitude as values of 70 and 75. Thus, Y values can

be translated to other values that are approximately uniformly spaced, but more indicative of the

actual visual differences.

The resulting scale L* represents lightness and closely models the Munsell system’s scale of

Value. The central vertical axis L* ranges from 0 (black) to 100 (white) and is used for both
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CIELAB and CIELUV uniform color spaces. On the chromaticity plane, the a* axis indicate the

transition between red (positive values) and green (negative values), while the b* axis indicates the

transition between yellow (positive values) and blue (negative values). It is important to note that

neither a* nor b* corresponds to known psychophysical properties of visual perception. The non-

linear transformation from the XYZ to the CIELAB and CIELUV uniform color spaces in terms

of the CIE XYZ tristimulus values are given by the Equations (2.19) and (2.20), respectively.

L =


116

Y
Yn

1/3

if Y/Yn > 0.008856

903.3
Y
Yn

otherwise

f (x) =

 x1/3 if x > 0.008856

7.787x+
4
29

otherwise

a∗= 500
[

f
(

X
Xn

)
− f

(
Y
Yn

)]
b∗= 200

[
f
(

Y
Yn

)
− f

(
Z
Zn

)]
(2.19)

L =


116

Y
Yn

1/3

if Y/Yn > 0.008856

903.3
Y
Yn

otherwise

u′ =
4X

X +15Y +3Z

un =
4Xn

Xn +15Yn +3Zn

u∗= 13L(u′−un)

v′ =
9Y

X +15Y +3Z

vn =
9Yn

Xn +15Yn +3Zn

v∗= 13L(v′− vn)

(2.20)

where (Xn,Yn,Zn) are the tristimulus values corresponding to "the illuminant" (reference white),

which according to the CIE Standard illuminant corresponds to (0.950155, 1.0000, 1.088259).

An approximate measure of the magnitude of the difference between colors (relative perceptual

distance) can be derived from the Euclidean distance (Dab) between the color components specified

in CIELAB/CIELUV coordinates [32].

Dab =
√

∆L∗2 +∆a∗2 +∆b∗2 (2.21)

From CIELAB and CIELUV spaces, it is possible to derive the perceptual color attributes such

as intensity, hue and saturation conveniently. One may use one of the two CIE color spaces and

the associated color difference formulas to map the (L* a* b*) or (L* u* v*) coordinates to the
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HSI cylindrical coordinates [28]. The chromaticity coordinates - (a*,b*) for CIELAB model and

(u*,v*) for CIELUV model - are represented in polar coordinates by the saturation, and corre-

sponds to the Euclidean distance from the lightness axis [34].

S =
√

∆u∗2 +∆v∗2 (2.22)

The hue angle Huv, expressed in degrees starting from the positive a* axis (red) and turning in

an anti-clockwise direction, can be described by:

Huv = atan2(v∗,u∗) (2.23)

2.3 Illumination Changes

One of the most difficult problems of working with colors is that the object’s apparent color varies

unpredictably with variations in the intensity and temperature of the light source. For instance,

a well-known example occurs in outdoor environments with daylight variations, the color shift

between sunny and cloudy days is simply not well modeled as Gaussian noise in RGB [35].

Fortunately, there exist models that are able to describe those kind of variations. One of these

models is given by a diagonal transform of the color space, which corresponds to the so-called

von-Kries model [36], or Diagonal model (DM). According to Diagonal Model, it is possible to

map an observed image Io taken under an unknown illuminant to a corresponding image Ic under

a canonical illuminant through a proper transformation in order to render images color constant.

The Diagonal model can be mathematically described by the following relation:

Ic = Du,cIu (2.24)

where Du,c is a diagonal matrix that maps the corresponding images from the unknown light source

u into the canonical light source c. To exploit this observation, Forsyth [37] modeled the illumina-

tion change using a set of three scale factors [a,b,c] such that an observed RGBo image [Ro,Go,Bo]

is mapped into its corresponding RGBc under a reference light [Rc,Gc,Bc] according to:Rc

Gc

Bc

=

a 0 0

0 b 0

0 0 c


Ro

Go

Bo

 (2.25)

Like the Reflection Model, Equation (2.3), the DM is strictly valid under the assumption of

narrow-band camera sensors. Despite the fact that camera sensors are not narrow-band, Fin-

layson et al. [38] note that this model can still be used for many surfaces and light sources.

However, they point that the DM really presents its shortcomings when trying to map saturated

and near saturated colors. For this reason, they propose an extention of the DM that includes the

"diffuse" light term (λ ) by adding an offset to the Equation (2.25). Such model is known as the

Diagonal-offset Model (DOM), and is given by:
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Rc

Gc

Bc

=

a 0 0

0 b 0

0 0 c


Ro

Go

Bo

+
o1

o2

o3

 (2.26)

Since the offset term (o1,o2,o3)
T is expected to be relatively smaller than the diagonal term

[a,b,c], the illumination change can still be modeled using the DM, but with some alternative

to avoid null solutions. According to Sande et al. [39], the Diagonal-offset Model corresponds

to (2.6). Thus, assuming the wavelength λk at the position X and a surface reflectance S(λk,X)

for k ∈ {R,G,B}, the Diagonal-offset Model can be described in terms of the light source and the

surface reflectance as:Ec(λR)S(X ,λR)

Ec(λG)S(X ,λG)

Ec(λB)S(X ,λB)

=

a 0 0

0 b 0

0 0 c


E0(λR)S(X ,λR)

E0(λG)S(X ,λG)

E0(λB)S(X ,λB)

+
A(λR)

A(λG)

A(λB)

 (2.27)

Finally, as the surface reflectance S(λk,X) remains equal under the canonical and the observed

images and A(λR) does not depend on the surface reflectance because it represents the ambient

light, the Equation (2.27) can be simplified as follows:Ec(λR)

Ec(λG)

Ec(λB)

=

a 0 0

0 b 0

0 0 c


E0(λR)

E0(λG)

E0(λB)

+
A(λR)

A(λG)

A(λB)

 (2.28)

On the basis of the Diagonal Model and the Diagonal-offset Model, illumination variations

can be classified into five categories: light intensity change (LIC), light intensity shift (LIS), light

intensity change and shift (LICS), light color change (LCC) and finally light color change and

shift (LCCS) [39].

In the first category (LIC), the three RGB components of a given image vary equally by a

constant factor, such that a = b = c and o1 = o2 = o3 = 0. Hence, when a function is invariant

to light intensity changes, it is scale-invariant with respect to light intensity. Therefore, we can

rewrite (2.26) as: Rc

Gc

Bc

=

a 0 0

0 a 0

0 0 a


Ro

Go

Bo

 (2.29)

In the second category (LIS), a constant shift affects equally all the RGB channels of a given

image, such that a = b = c = 1 and o1 = o2 = o3 6= 0. Therefore, when a function is invariant to

light intensity shift, it is shift-invariant with respect to light intensity, as defined by:Rc

Gc

Bc

=

Ro

Go

Bo

+
o1

o1

o1

 (2.30)
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The third category (LICS), is a combination of the two above mentioned categories, and also

affects all three RGB channels equally, in such a way that a = b = c and o1 = o2 = o3 6= 0. Thus,

when a function is invariant to light intensity changes and to light intensity shift, it is known as

scale-invariant and shift-invariant with respect to light intensity. According to this, we can write:

Rc

Gc

Bc

=

a 0 0

0 a 0

0 0 a


Ro

Go

Bo

+
o1

o1

o1

 (2.31)

The two remaining categories do not assume that RGB channels are equally affected by vari-

ations in the light source. The fourth category (LCC) is the Diagonal Model, which assumes that

a 6= b 6= c and o1 = o2 = o3 = 0. Since images are able to vary differently in each channel, this

category can model changes in the illuminant color temperature and light scattering. Following

these assumptions, the light color change category can be described by (2.25).

The last category (LCCS) is the full Diagonal-offset Model, and takes into consideration inde-

pendent scales a 6= b 6= c and offsets o1 6= o2 6= o3 for each image channel. The light color change

and shift is the most complete model, and can be described through the full Diagonal-offset Model

(2.26).

2.4 Integral Images

Integral image is an intermediate image representation proposed by Viola and Jones [40]. This

representation was designed to reduce the computational effort regarding the convolution of rect-

angular filters by pre-processing the input images. An integral image I∑(x,y) can be defined as a

table that, at each location X = (x,y)T , contains the sum of all pixels of I(x,y) within the rectan-

gular region formed by the origin O and X (all pixels above and to the left of X). Table 2.1 shows

the values of a given gray-scale image (A) and the respective integral image representation (B).

I∑(x,y) =
i ≤ x

∑
i=0

j ≤ y

∑
j=0

I(i, j) (2.32)

Table 2.1: Example of Integral Image Computation: intensity matrix of a given gray scale image
(A) and its respective integral image (B).

57 57 66 72 76
64 65 66 70 78
65 61 64 69 69
109 76 84 109 107
115 69 101 132 124

(A)

57 114 180 252 328
121 243 375 517 671
186 369 565 776 999
295 554 834 1154 1484
410 738 1119 1571 2025

(B)



24 Background Theory

Note that the implementation of the Equation (2.32) in its current form is not computationally

efficient, since at least two passes over each pixel X are needed to compute I∑(x,y). The integral

image can be computed in one-pass over the image using the following recurrence relation:

s(y,x) = s(y,x−1)+ I(y,x) (2.33)

I∑(y,x) = I∑(y−1,x)+ s(y,x) (2.34)

where s(x,y) is the cumulative row sum. The cost for deriving this intermediate representation

in computer vision applications is totally justified by the significant reduction in the computa-

tional complexity of box filters convolution. Once the integral image has been computed, the

sum of intensities of any rectangular region is reduced to three additions and four memory ac-

cesses. An example is the convolution of a box type filter (dark gray rectangle) with a given image

(Figure 2.6A). The first step consists in deriving the sum of all image pixels within the rectan-

gle formed by the origin and filter’s bottom-right corner (Figure 2.6B). Next, one may subtract

the regions that do not belong to the filter, like the gray areas represented in (Figure 2.6C) and

(Figure 2.6D). Finally, it is needed to balance the equation with the region (Figure 2.6E) that

was subtracted twice. Using the data provided by the input image, the filter response Fr could be

calculated as:

Fr = I∑(x0−1,y0−1)+ I∑(xe,ye)− I∑(xe,y0−1)− I∑(x0−1,ye) (2.35)

This approach is particularly interesting in algorithms that require the convolution of several

filters and with filters of big size. Since the number of memory access and arithmetic operations

do not vary with the filter size, the time to compute the filter response remains constant.

2.5 Image Derivatives

The derivative of a continuous function f (x) at a given point X is defined by the function whose

value at X is the limit

∂ f (x)
∂x

= lim
h→0

f (x+h)− f (x)
h

(2.36)

However, since the input image is represented as a set of discrete pixels of intensity I(x,y), and

not by a continuous function, the problem we have to address is how to compute the image deriva-

tives. One solution to replace partial derivatives is to make use of finite differences of the intensity

of consecutive pixels. The partial differential equations are converted into difference equations,

thus the resultant system of algebraic equations can be solved using any direct or iterative method.
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Figure 2.6: Example of box type filter convolution.

If instead of approaching zero, h has a fixed, positive, non-zero value, it is possible to re-write

the Equation (2.36) as a forward difference.

∂ I(x)
∂x

≈
I(x+h)− I(x)

h
(2.37)

On the other hand, if h has a fixed, negative, non-zero value, it is possible to approximate the

Equation (2.36) as a backward difference, Equation (2.38).

∂ I(x)
∂x

≈
I(x)− I(x+h)

h
(2.38)

Since the definitions of both forward and backward differences are not symmetric, they would

compute the derivative at the "half-pixel" position ∂ I(x+h/2) and ∂ I(x−h/2), respectively. One

way to cope with this issue is to use the method of the central difference, Equation (2.39), which

fits a parabola through three consecutive points of the profile in order to compute the derivative of

the parabola at the center point.
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∂ I(x)
∂x

≈
I(x+h)− I(x−h)

2h
(2.39)

With the same mechanism, it is possible to use the finite differences to approximate the partial

derivatives of discrete functions of two variables

∂ I(x,y)
∂x

≈
I(x+h,y)− I(x−h,y)

2h
(2.40)

∂ I(x,y)
∂y

≈
I(x,y+ k)− I(x,y− k)

2k
(2.41)

By definition, second derivatives may be zero in flat areas, non zero at the onset and end of a

gray level step or ramp and zero along ramps of constant slope. Thus, we can approximate partial

second derivatives through the Equations (2.42) to (2.44).

∂ 2I(x,y)
∂x2 ≈

I(x+h,y)−2I(x,y)+ I(x−h,y)
2h

(2.42)

∂ 2I(x,y)
∂y2 ≈

I(x,y+ k)−2I(x,y)+ I(x,y− k)
2k

(2.43)

∂ 2I(x,y)
∂xy

≈
I(x+h,y+ k)− I(x+h,y− k)− I(x−h,y+ k)+ I(x−,y− k)

4hk
(2.44)

From the equations above one may note that the finite derivatives approximated through the

central difference method are linear filters, thus, can be represented through convolution masks,

respectively Equations (2.45) to (2.49). The process of applying the filter will be referred to as

convolution, and the pattern of weights used in the filter will be referred to as the kernel of the

filter.
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Mask
∂ I(x,y)

∂x

=
1
2

[
1 0 −1

]
(2.45)

Mask
∂ I(x,y)

∂y

=
1
2

 1

0

−1

 (2.46)

Mask
∂ 2I(x,y)

∂x2

=
1
2

[
1 −2 1

]
(2.47)

Mask
∂ 2I(x,y)

∂y2

=
1
2

 1

−2

1

 (2.48)

Mask
∂ 2I(x,y)

∂xy

=
1
4

 1 0 −1

0 0 0

−1 0 1

 (2.49)

2.6 Gaussian Filtering

Gaussian kernels consist of a weighted sum of pixels using different patterns. Gaussians take

advantage of a basic image property: the value of a pixel is usually similar to that of its neighbor-

hood. Thus, assuming that the noise that affects the image preserves this property, it is possible to

reduce the effects of the noise by replacing the intensity of each pixel with a weighted average of

its neighbors, attenuating high-frequency components (a process often referred to as smoothing or

blurring). Using a set of weights that are large at the center and fell off sharply as the distance to

the center increases, it is possible to model the kind of smoothing that occurs in a defocused lens

system. A good formal model for this fuzzy blob is the symmetric Gaussian kernel described by

the Equation (2.50), and depicted in the Figure 2.7-A.

Gσ (x,y) =
1

2Πσ2 exp
(
−x2 + y2

2σ2

)
(2.50)

σ is referred to as the standard deviation of the Gaussian, and (x,y) are inter-pixel spaces

referred to as pixels. The constant term makes the integral over the whole plane equal to one and

is often ignored in smoothing applications.

In this approach, smoothing suppress the noise by enforcing the requirement that pixels look

like its neighbors. By down weighting distant neighbors in average, we can assure that the require-

ment that a pixel looks like its neighbors is less imposed for distant neighbors.

From (2.50), three important practical considerations can be highlighted:

• If σ is small, the smoothing will have little effect because the weights for all pixels of the

center will be very small.
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(A)

(B)

(C)

Figure 2.7: Gaussian Filter. (A) 3D plot of the continuous Gaussian filter. (B) 2D continuous
Gaussian kernel. (C) 9x9 2D discrete Gaussian kernel.

• For larger standard deviation, the neighboring pixels will have larger weights in the weight-

ing average, which means that the average will be strongly biased toward a consensus of the

neighbors (noise large disappears, but at the cost of some blurring).

• A kernel that has large standard deviation will cause much of the image detail disappears

along with the noise.

Gaussians are convenient blurring kernels due to a number of important properties they present.

The first is that the convolution of a Gaussian (Gσ1) with another Gaussian (Gσ2) results in a third

Gaussian, Equation (2.51).

Gσ1⊗Gσ2 = G√
σ2

1+σ2
2

(2.51)

Therefore, it is possible to obtain heavily smoothed images by re-smoothing smoothed im-

ages. This is an important property because discrete convolution can be an expensive operation

(particularly for kernels of large size), and it is common to want versions of an image smoothed

by different amounts.

Another important property is the efficiency. For a Gaussian kernel of standard deviation 1

pixel, points outside a 5x5 grid centered at the origin have values smaller than e−4 = 0.0184. This

means that, for several applications, we can ignore their contribution and represent the discrete

Gaussian as a small array. However, if the standard deviation is 10 pixels, we may need at least

a 50x50 array. Accounting the number of operations necessary to perform the convolution of a
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(A)

(B)

(C)

Figure 2.8: Gaussian derivative in x-direction. (A) 3D plot of the continuous filter. (B) 2D contin-
uous kernel. (C) 9x9 2D discrete kernel.

(A)

(B)

(C)

Figure 2.9: Gaussian derivative in y-direction. (A) 3D plot of the continuous filter. (B) 2D contin-
uous kernel. (C) 9x9 2D discrete kernel.
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(A)

(B)

(C)

Figure 2.10: Gaussian derivative in xy-direction. (A) 3D plot of the continuous filter. (B) 2D
continuous kernel. (C) 9x9 2D discrete kernel.

reasonably size image with a 50x50 array may demonstrate that it is an unattractive procedure.

A possible alternative is to perform repeatedly the convolution with much smaller filters, which

is much more efficient because it is not necessary to keep a large amount of pixels in the mem-

ory [41].

Gaussians are not the only low-pass filter used for smoothing images and constructing a scale-

space representation. However, several mathematical results, such as those described by Koen-

derink [42] and Babaud et al. [43] demonstrate that, within the class of linear transformations, the

Gaussian kernel is the unique kernel for generating a scale-space. According to Linderberg [44],

the conditions that specify the uniqueness are essentially linearity and shift invariance:

• Linearity: Gσ (aF + bH) = aGσ F + bGσ H, where a and b are constants and F and H are

signals;

• Shift invariance: Gσ S(∂x,∂y)F = S(∂x,∂y)Gσ F , where S(∂x,∂y) denotes the translator operator.

But the Gaussian kernel also satisfies a number of other properties (scale-space axioms) that

make it a special form of multi-scale representation, like:

• Non-creation of local extrema (zero-crossings) in one dimension;

• Non-enhancement of local extrema in any number of dimensions

• Rotational symmetry
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• Scale invariance

• Positivity

• Normalization

The Figures 2.8, 2.9 and 2.10 plot the 3D and the 2D Gaussian second order derivatives in x,

y and xy directions. Gaussians may be optimal for scale-space analysis, but its continuous nature

is not practical in computer vision applications. Thus, the intensity of each pixel in the discretized

Gaussian kernel. The Figures 2.8 C, 2.9 C, and 2.10 C define the filter to approximate a Gaussian

second order partial derivative.

2.7 Random Sample Consensus

The RANdom SAmple Consensus (RANSAC) is an iterative method to estimate parameters of a

mathematical model from a set of observed data which contains outliers [45]. First, RANSAC

selects a random subset of the original data (hypothetical inliers). Next, the algorithm estimates

the parameters of the model which can explain the observation. All points are tested against the

fitted model, and those which fit well are also considered hypothetical inliers. Later, this extended

set of points is used to re-estimate the parameters. The model is then evaluated by computing

the error relative to the hypothetical inliers. This procedure is repeated a fixed number of times.

Finally, the model hypothesis with lowest error is selected. The number of hypothesis (iterations)

N necessary to guarantee, with probability p, that a correct solution is found can be computed by:

N =
log(1− p)

log(1−ωs)
(2.52)

where ω is the assumed inlier ratio (number of inliers in data / number of points in data) and s the

minimal number data points needed to estimate the model.

2.8 Image Features

Current models of human visual system suggest that our visual attention is a bottom-up pro-

cess [46]. It starts with the unconscious detection of all salient image details, which are image

patterns whose low-level features (i.e size, shape, luminance, color, direction, texture, binocular

disparity) differs significantly from its immediate neighborhood [46]. The visual focus is then

sequentially shifted to each of these regions, so they can be analyzed in detail. Computational

models based on information theory have been shown to successfully model human salience. In

computer vision and image processing, such image details are usually referred to as local image

features, which can be points, edges, T-junctions, lines, contours, blobs or image patches. The

use of high-level information, though, is usually avoided due to the fragility of segmentation algo-

rithms.
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Local image features provide a limited set of well localized and individually identifiable anchor

points. What the features actually represent is not really relevant, as long as their location can be

determined accurately and in a stable manner over time. For this reason, it is extremely important

for extracted features to be robust to noise and invariant with respect to geometrical (i.e. changes

in scale, translation, rotation, affine/projective transformation) and photometric variations (illu-

mination direction, intensity, color, and highlights) [47, 48]. According to Tuytelaars et al. [49],

salient features should hold the following properties:

• Repeatability: is a property related to the stability of the detected interest points. An interest

point is repeated if it is accurately detected in the different images of the same scene. The

repeatability rate is a measure of the stability, and corresponds to the percentage of the

total observed points that are detected in both images. Repeatability is considered the most

important property of a feature detector, and can be achieved either by invariance or by

robustness. Invariance is provided by the mathematical model used to compute the detector

response, and consists in the capability to yield a constant response in the presence of large

variations in scale, translation, rotation, illumination and distortion. Robustness, on the

other hand, is concerned with the ability to make feature detection methods less sensitive to

small deformations. Typical deformations that are tackled using robustness are image noise,

discretization effects, compression and blur.

• Distinctiveness: is the capacity of the detected features to present intensity patterns with

significant variations. This property is important in the sense that it allows a single feature

to be correctly matched with high probability against a large database of features.

• Locality: features may be defined in terms of its local neighborhood. The detection of

features through local operations reduces the probability of occlusion due to camera motion.

In addition, it allows to use simpler models to approximate the geometric and photometric

deformations between two images.

• Quantity: the optimal number of features depends on the application and the scene condi-

tions, and should be adaptable over a large range by a threshold. The number of detected

features should be large enough to describe even small objects, but small enough to not

compromise the algorithm efficiency.

• Distribution: the density of features should reflect the information content of the image

to provide a compact image representation. However, image transformations can not be

properly estimated when features are concentrated in small image regions.

• Accuracy: the detected features should be accurately localized, both in image location and

scale.

• Efficiency: regards to the computational simplicity of the algorithm. This property can be a

determinant factor in the choice of the proper feature detector. Preferably, the detection of

features in a new image should allow for time-critical applications.
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Although these theoretical properties make the Local image features suitable to be used as

visual landmarks, in practice, such stability is not always achieved. Since features are used as the

starting point and main primitives for subsequent algorithms, the overall algorithm will often only

be as good as its feature detector. The four most popular feature detectors used in vision-based

localization methodologies will be summarized throughout the next subsections.

2.8.1 Harris Corner

The Harris corner detector was proposed by Harris and Stephens [50], and relies on the principle

that at a corner the image intensity will change largely in multiple directions. The algorithm is

based on the second moment matrix M, also called the autocorrelation matrix, which describes the

gradient distribution in a local neighborhood of a pixel located at (x,y):

M(x,y) =


(

∂ I(x,y)
∂x

)2
∂ I(x,y)

∂x
∂ I(x,y)

∂y
∂ I(x,y)

∂x
∂ I(x,y)

∂y

(
∂ I(x,y)

∂y

)2

 (2.53)

The local image derivatives are computed with Gaussian kernels (Equation 2.50) of scale σD

(the differentiation scale). The derivatives are then averaged in the neighborhood of the point by

smoothing with a Gaussian window of scale σI (the integration scale).

M = σD
2g(σI)∗

[
Ix

2(x,y,σD) Ix(x,y,σD)Iy(x,y,σD)

Ix(x,y,σD)Iy(x,y,σD) Iy
2(x,y,σD)

]
(2.54)

where g(σ) is the Gaussian kernel, and

Ix(x,y,σD) =
∂

∂x,y
g(σD)∗ I(x,y) (2.55)

The eigenvalues of this matrix represent the principal signal changes in two orthogonal direc-

tions in a neighborhood around the point defined by σI . Let λ1 and λ2 be the eigenvalues of the

matrix M(x,y), the Harris corner detector defines the autocorrelation function R as:

R = λ1λ2− k(λ1 +λ1)
2 (2.56)

This function will be sharply peaked if both of the eigenvalues are high, which means that

shifts in any direction will produce a significant increase, indicating that it is a corner. Since

the explicit decomposition of the eigenvalues is computationally expensive, Harris and Stephens

suggested to approximate the autocorrelation function using the determinant and the trace of the

second moment matrix:

R(x,y) = det(M)− k trace(M) (2.57)
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4-point neighborhood  
corner point

(a)

8-point neighborhood  
corner point

(b)

Figure 2.11: Definition of pixel connectivity: (a) 4-neighbor pixels are those who share an edge;
(b) 8-neighbor pixels are those who either share an edge or a vertex.

with det(M) the determinant and trace(M) the trace of the matrix M. The value of k is determined

empirically, and usually set to 0.04. Adding the trace reduces the response of the operator on

strong straight contours. When used as an interest point detector, local maxima of the cornerness

function are extracted through non-maximum suppression of the pixel direct (Figure 2.11a) or

indirect neighborhood (Figure 2.11b).

The algorithm describes the local neighborhood of a point by directly storing the raw image

intensity values from a small square window around the detected point.

2.8.2 Harris-Laplace

Harris corner detector has shown its ability to identify interest points of the image with rotational

invariance. One severe limitation of the algorithm, though, is the lack of invariance to changes

in scale. Thus, Mikolajczyk et al. [51] proposed the Harris-Laplace detector, which is a twofold

process that combines the traditional 2D Harris corner with a Laplacian scale-space operator.

The theory of scale-space shows that in addition to the two-dimensions of the (x,y) image

position, a third dimension (scale) can be constructed to estimate the appearance of the image

as if seen from further away. To address such multi-scale analysis, Burt and Adelson [52] have

proposed a simple but yet powerful representation, in which the scale-space can be represented

by a collection of decreasing resolution images arranged in the shape of a pyramid (Laplacian

pyramid). The main advantage of this representation is that the image size decreases exponentially

with the scale level, and hence also the amount of computations required to process the data. As

represented in the Figure 2.12, the base of the pyramid contains a high resolution representation

of the image under analysis (first level). Then, each subsequent level is obtained by successively

reducing the image size by smoothing and sub-sampling the previous image. Thus, as you move

up the pyramid apex, both image size and resolution decrease.

Harris-Laplace locates local features with the Harris corner detector in all scales of the image

pyramid. Next, the algorithm selects the points for which the Laplacian attains a maximum over
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Scale

Figure 2.12: Typical scale-space representation arranged in the shape of pyramid.

the scale.

2.8.3 Scale-Invariant Feature Transform

The Scale-Invariant Feature Transform (SIFT) is a feature detection and description algorithm

presented by Lowe [53]. The interest points extracted are said to be invariant to image scale,

rotation, and partially invariant to changes in viewpoint and illumination. SIFT features are located

at maxima and minima of a difference of Gaussians (DoG) function applied in scale space. Finding

these principal curvatures amounts to solving for the eigenvalues of the second-order Hessian

matrix H. The Hessian matrix can be described as the square matrix of second-order partial

derivatives of a function. Considering a continuous function f(x,y) of two variables, the Hessian

matrix H can be defined as:

H(x,y) =


∂ 2I(x,y)

∂x2
∂ 2I(x,y)

∂xy
∂ 2I(x,y)

∂xy
∂ 2I(x,y)

∂y2

 (2.58)

The trace of H, Equation (2.59), gives us the sum of the two eigenvalues, while its determinant,

Equation (2.60), yields the product. The SIFT response R, Equation (2.61), depends only on the

ratio of the eigenvalues rather than their individual values. Therefore the higher the absolute

difference between the two eigenvalues, the higher the value of R.

trace(H(x,y)) =
(

∂ 2I(x,y)
∂x2 +

∂ 2I(x,y)
∂y2

)
(2.59)

det(H(x,y)) =
∂ 2I(x,y)

∂x2
∂ 2I(x,y)

∂y2 −
(

∂ 2I(x,y)
∂xy

)2

(2.60)

R(x,y) =
(trace(H(x,y)))2

det (H(x,y))
(2.61)
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The description of SIFT key points is performed based on the local image information at

the key point’s characteristic scale. First, to provide rotation invariance, SIFT assigns a global

orientation to each point based on local image gradient directions. Next, each point is used to

generate a feature vector that describes the local image region sampled. The descriptor is computed

based on a set of orientation histograms at a 4x4 subregion around the interest point. Since there

are 4 x 4 = 16 histograms, each with 8 bins, the final descriptor vector presents 128 elements.

Illumination invariance comes at the cost of additional computation, in which the descriptor is

normalized by the square root of the sum of the squared components.

2.8.4 Speeded Up Robust Feature

Speeded Up Robust Feature (SURF) is a detector and descriptor algorithm that was designed to

deal with scale and rotation invariant features over variations in the camera’s point of view [54, 55].

It is based on sums of bidimentional Haar wavelet responses and makes an efficient use of integral

images. The algorithm can be divided into two main steps: interest point detection and interest

point description.

The detection step of the SURF algorithm takes advantage of the good performance and accu-

racy of the Hessian matrix, Equation (2.58), to detect blob-like structures. Informally, the eigen-

vectors of the Hessian matrix represent the dominant edge orientations of the window, and the

eigenvalues represent the amount of energy along these orientations. The SURF detector looks

for blob-like structures that have significant amounts of energy in all directions. Since the deter-

minant of the Hessian matrix is the product of its eigenvalues, it is possible to classify the points

based on the sign of the result. A negative determinant means that the eigenvalues do not have the

same signal, and thus the point is not local maximum. On the other hand, a positive determinant

means that the signal is the same for both eigenvalues, and so the point is a local maximum. The

determinant of the Hessian matrix can be expressed according to:

det(H) =
∂ 2 f
∂x2

∂ 2 f
∂y2 −

(
∂ 2 f

∂x∂y

)2

(2.62)

As previously discussed in Section 2.5, the derivatives of the Hessian matrix can be calculated

using standard convolution methods. However, once the kernels derived from the second central

difference are approximating a second derivative measurement on the image, they are very sensi-

tive to noise. For this reason, Bay et al. [55] propose to substitute the second central difference for

a Gaussian kernel of second order.

This way, the Hessian matrix H(Xp ) of a given point Xp=(x,y) from the image I(x,y), can be

re-written as function of both space Xp=(x,y) and scale σ :

H(G(x,y,σ)) =


∂ 2g(σ)

∂x2
∂ 2g(σ)

∂x∂y
∂ 2g(σ)

∂x∂y
∂ 2g(σ)

∂y2

 (2.63)
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(A) (B) (C)

Figure 2.13: Box plot filters: approximations of the second order Gaussian partial derivative in the
(A) y-direction (Dyy), (B) x-direction (Dxx) and (C) xy-direction (Dxy).

where,
∂ 2g(σ)

∂x2 is the convolution of the Gaussian second order derivative in the x-direction (Fig-

ure 2.8) at the point X,
∂ 2g(σ)

∂y2 the convolution of the Gaussian second order derivative in the

y-direction (Figure 2.9) and
∂ 2g(σ)

∂x∂y
the convolution of the Gaussian second order derivative in

the xy-direction (Figure 2.10).

The drawback of this approach is the number of operations necessary to perform the convolu-

tion, which is equal to the number of pixels within the filter. For example, in a small 9x9 filter, 81

memory accesses are required, but this number can easily grow to 2500 (50x50 pixels) and 9801

(99x99 pixels) as the filter side length increases.

In order to improve the efficiency of the algorithm, SURF pushes the discretization further

and approximates the second order Gaussian derivatives (and thus the Hessian matrix determinant)

using box type filters (Figure 2.13). Box filters are spatial averaging filters in which all coefficients

are equal. Thus, each second order Gaussian derivative filters can be approximated by using

of three (x-direction and y-direction) or four boxes (xy-direction) with different weights. The

approximation of Gaussians by box filters provides SURF the ability to use integral images, and

thus perform fast convolutions with filters of several sizes at constant time. To illustrate the benefits

of integral images, we can recover the previous example about number of memory access required

to perform the convolution of a 9x9 Dyy filter. While 81 memory accesses are needed to compute

the response of the discretized and cropped version of the second order Gaussian filter, only 8

memory accesses are demanded by the respective box type filter. Furthermore, while for the

original Gaussian filter the number of memory accesses increases with the filter size, it remains

constant for box like filters of any size.

For both Dxx and Dyy filters, white regions are weighted 1, black regions weighted -2 and gray

regions zero. For the Dxy filter, white regions are weighted 1, black regions weighted -1 and gray

regions zero. The weights applied to the rectangular regions are kept simple for computational

efficiency. This way, the determinant of the Hessian matrix can be approximated as:

det(Happrox) = DxxDyy− (0.912Dxy)
2 (2.64)

where the constant 0.912 represents a relative weight necessary for the energy conservation be-

tween real Gaussian kernels and the approximated Gaussian kernels. The determinant is referred
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Scale

Figure 2.14: SURF scale-space: instead of smoothing and sub-sampling the input image, SURF
leaves the image size unchanged and varies only the size of the filters (adapted from [55]).

to as the blob response at the location X = (x,y,σ).

The notion of scale is extremely important for feature detection, and the explanation is very

simple. Features in a given image, just like any objects in the real world, are only meaningful at

certain ranges of scale. In fact, features appear differently according to the scale they are observed

due to surface textures and perspective effects. Thus, the selection of the right scale is not only

utmost important for the detection, but also for its description, allowing features to be matched

across images taken at different zoom levels or distances.

Based on classical scale-space representation, Bay et al. [55] proposes an alternative struc-

ture. In their innovative approach, the scale-space is represented through a collection of filters

with increasing sizes, arranged in the shape of an inverted pyramid (Figure 2.14). The inverse

pyramid approach is very advantageous over its counterpart once that it is possible to eliminate

the computational overhead of smoothing and up-scaling the input image.

A second advantage consists in the fact that the image is not subjected to the aliasing effect,

unlike those sub-sampled images of the usual scale-space implementation. Furthermore, once the

pyramid layers do not depend from its previous, they can be processed in parallel (which could

have a significant impact in the overall computational efficiency). On the other hand, the box filter

approach presents a disadvantage concerning the scale-invariance of the detected interest points.

In fact, once box type filters preserve high frequency components (sharp transitions between re-

gions) they can get lost in zoomed-out variants of the same scene (thus limiting the feature’s

scale-invariance).

In SURF, the scale-space is subdivided into a number of structures called octaves. Each octave

represents a series of filter responses obtained by the convolution of the input image with filters of

increasing sizes. The number of filters in each octave is kept constant, and called scale levels. The

value of the pair octave-level determines the size length of the filter that will be convolved with
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Figure 2.15: Sequence of the first three Dyy filters of the first octave.

the image at that given layer in the scale-space.

FilterSize = 3(2octavelevel +1) (2.65)

The lowest scale is obtained from the output of the 9x9 filter, which approximates a Gaussian

derivative with σ = 1.2. When constructing the octaves, the increase in the filter’s size is restricted

by the layout ratio of the second order Gaussian derivative. Due to the presence of a central pixel

in each lobe its dimensions must increase equally around this location, so the minimum increase

in the lobe size is 2 pixels. Since each filter presents three lobes, the minimum increase in the

filter size is of 6 pixels. Thus the filter sequence in the first octave is 9, 15, 21, 27 (Figure 2.15).

For each new octave, the filter size increase is doubled. Therefore, the second octave, that starts

with a filter of 15x15 pixels and presents a filter size increase of 12 pixels per level, has a filter

sequence of 15, 27, 39, 51. The third octave, which starts with a filter of size 27 and presents a

filter size increase of 24, has a sequence of 27, 51, 75, 99 and so on. As the filter increases so does

the corresponding scale of the Gaussian derivative. An approximation of the Gaussian scale can

be estimated by:

σapprox = FilterSize
Base f ilterscale
Base f ilterSize

(2.66)

The position of the upper-left and bottom-right corner of each region of the filter can be deter-

mined according to the position (x,y) of the mask’s central pixel and the length l0 of the positive or

negative lobe of the partial second order derivative (shortest side of the weighted black and white

regions), in the direction of the derivation (x or y):

l0 =
FilterSize

3
(2.67)

Typically, the approach used to detect features consists on applying the filter over different

scales and detect those with maximum response (Figure 2.16).

After a threshold operation, a non-maximum suppression is applied both spatially and over the

neighboring scales (Figure 2.17). In this step, each pixel is compared in a 3x3x3 neighborhood, and
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Figure 2.16: Left to right: the original signal and its respective blob response for several scales.
The feature is recognized at the scale which provides the maxim blob response (σ = 8.00 in this
example).

classified as interest points if its blob-response is greater than the blob-response of its 26 neigh-

bours (8 pixels in the native scale, 9 pixels in the immediately lower and 9 pixels in immediately

higher scale). The scale at which a maximum response over scales is attained will be assumed to

give information about how large a feature is. Hence, the first and the last Hessian response map

of each octave cannot contain such maxima themselves, as they are used for comparison purposes

only.

Finally, the interest point localization uses 3D interpolation method proposed by Brown and

Lowe [56]. This methodology fits a 3D quadratic function to the local sample points to determine

the interpolated location of the maximum. The interpolation of the features blob-response in scale

and space substantially improve to feature’s matching and stability by yielding a location with

sub-pixel/sub-scale accuracy. Brown expresses determinant of the Hessian function H(x,y,σ) as

a Taylor expansion up to quadratic terms.

H(X) = H +
∂HT

∂X
X +

1
2

XT ∂ 2H
∂X2 (2.68)

where H and its derivatives are evaluated at the sample point and X = (x,y,σ) is the offset from

this point. The location of the interpolated interest point X̂ = (x,y,σ) is taken as the extremum of

this 3D quadratic, and can be determined by setting to zero the derivative of the Equation 2.68.
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Figure 2.17: Non-maximum suppression in a 3x3x3 neighbourhood. The central pixel is only
considered a feature point if its blob-response is greater than its 26 neighbours.

X̂ =−
(

∂ 2H
∂X2

)−1
∂H
∂X

(2.69)

As suggested by Brown, the Hessian and derivative of H are approximated by using differences

of neighboring sample points. The resulting 3x3 linear system can be solved with minimal cost,

computing the entries of the 3x3 matrix
∂ 2H
∂X2 and the 3x1 vector

H
∂X

:

∂ 2H
∂X2 =

dxx dyx dσx

dxy dyy dσy

dxσ dyσ dσσ

 (2.70)

∂HT

∂X
=

dx

dy

dσ

 (2.71)

where dx refers to
∂ I
∂X

, dxx refers to
∂ 2I
∂X2 , and so on. If the offset X̂ is larger than 0.5 in any

dimension, then it means that the extremum lies closer to a different sample point. In this case, the

sample point is changed and the interpolation performed instead about that point. The final offset

X̂ is added to the location of its sample point to get the interpolated estimate for the location of the

extremum.

A SURF feature descriptor is a vector of 64 elements that describes how the intensity of the

pixels in the neighbourhood of an interest point is distributed. In order to build the descriptor,

the algorithm first determines the feature orientation in the scale-space that the feature has been

detected. Then, the algorithm constructs a square window aligned to the selected orientation to

extract the descriptors. Thus, once the descriptors are always computed relatively to the predom-

inant direction, it is possible to compare the descriptors of interest points detected in frames with

different orientation, and so providing orientation invariance to detected features.

The first step to characterize an interest point consists on finding its predominant orientation

of the intensities in its neighborhood. The predominant orientation is important in order to achieve

invariance to image rotation, and is built on the response distribution of Haar wavelet filters. First

order Haar wavelets (Figure 2.18) are simple filters which can be used to find gradients in the x
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Figure 2.18: Haar wavelet filters: gradient in the x-direction (A) and y-direction (B).

(A) and y (B) directions. In these filters, white regions are weighted 1, while black regions are

weighted -1.

To determine the interest point orientation, the algorithm computes the response of both Haar

filters (x and y directions) for a set of sampled pixels within a circular neighborhood around the

interest point. It is important to note that in order to keep scale invariance, the sampling step size,

the side length of the Haar filters and the radius size of the circular neighborhood depends on the

scale σ in which the feature was detected, and are respectively σ , 4σ and 6σ . One more time, the

use of integral images contribute to the algorithm efficiency, once only six operations are needed

to compute the Haar wavelet response in x or y direction at any scale.

Once calculated, the Haar responses are weighted with a Gaussian function (SD = 2σ) cen-

tered at the interest point. The Gaussian function is extremely important in many areas due to its

significance as the probability density function for the normal distribution. As a weighting func-

tion, it expresses the idea that points close to the center have more relevance than the distant points.

The weighted responses are then represented as points in the space, with the x-responses along the

horizontal axis and y-response along the vertical axis of the Cartesian coordinate system. Finally,

the dominant orientation is estimated by rotating a sliding window (typically a circular arc with

central angle of
Π

3
radians with a step size of 0.1 radians, Figure 2.19. In each step, the algorithm

computes the sum of all x-responses and of all y-responses within the window to determine a local

orientation vector. The longest vector of all windows defines the orientation Θ of the interest point.

The statistics of the gradient in an image neighborhood yields quite a useful description of

the neighborhood.The extraction of SURF descriptors starts with the construction of one squared

window for each interest point detected (descriptor window). This window contains the pixels that

will be analyzed to compute the feature’s descriptors. Each descriptor window is centered at the

interest point, and oriented along the feature’s orientation. In order to keep scale invariance, the

side length lw of each window varies linearly with the scale in which the feature was detected, and

corresponds:

lw = 20σ (2.72)

Descriptor windows are regularly sub-divided into 4x4 smaller sub-regions. Each sub-region

contains local spatial information that provides to the feature four descriptors. In order to de-

termine these descriptors, the response of Haar wavelets of size 2σ for both x and y-directions

(dx and dy respectively), are computed for 25 regularly spaced sample points (Figure 2.20). The



2.8 Image Features 43

dx

dy

Figure 2.19: Predominant interest point orientation (adapted from [55]).

use of such wavelets provides the descriptor with important characteristics, like the invariance to

bias in illumination (offset), and invariance to contrast (scale factor), which is achieved by simply

normalizing the descriptor vector.

It is important to note that the horizontal wavelet response dx and the vertical wavelet response

dy are defined in relation to the selected interest point orientation, preventing the use of integral

images, once integral images only retrieves upright rectangular areas. This way, the algorithm first

extracts the descriptor window W(y,x) containing all 20σ2 pixels around the keypoint:

xs = x+
lw
2

cosθ +
lw
2

cosθ (2.73)

ys = y− lw
2

sinΘ+
lw
2

cosΘ (2.74)

W (y,x) = I(ys,xs) (2.75)

Later, the descriptor window is then scaled to the P of size 20, so that each pixel’s size is σ ,

facilitating the computation of the gradients in x and y:

Figure 2.20: Feature’s orientation: in detail the 25 regularly sampled points used to compute the
first four-dimensional descriptor vector.
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Dx(i, j) = P(i, j+1)−P(i, j)+P(i+1, j+1)−P(i+1, j) (2.76)

Dyi, j) = P(i+1, j)−P(i, j)+P(i+1, j+1)−P(i, j+1) (2.77)

Finally, the responses are weighted with a 2D Gaussian function, of standard deviation SD =

3.3σ , to increase robustness towards geometric deformations. The sum of the weighted wavelets

responses dx and dy over each sub-region yields the first set of four entries in the feature vector:

V =
(
∑dx,∑dy,∑ |dx|,∑ |dx|

)
(2.78)

2.9 Conclusions

Color information can be used in image processing to simplify the identification and extraction

of objects from a scene. Color images carry more information than gray level images, and thus

provide a broader class of discrimination between material boundaries [57]. In addition, color in-

formation enables one to distinguish between true color variation and photometric distortions [58].

Thus, when colored images are represented only through their intensity value, a very important

source of information is lost [48].

Linear color spaces such as RGB and XYZ, presents high correlation on its color components.

This correlation makes the three components dependent upon each other and strongly associated

with the light intensity. Because of such association, all three color components change accord-

ing to variations in the illumination of the scene, causing of severe instability in color matching

methodologies. Hence, when working with linear color spaces it is very difficult to discriminate

highlights, shadows and shading [27]. Thus, all the gain of information provided by the chromatic

dimensions might be useless once varying lighting conditions affects the observed colors. Indeed,

photometric invariance is less trivial to achieve, but utmost important when dealing with such as a

changes in illumination color, illumination direction, and camera viewpoint.

One possible way to deal with varying illumination conditions is to work in those color spaces

that decouple lightness, thus, applying the algorithms that were originally developed to gray scale

images in hue component only. However, decoupling the illumination through a non-linear trans-

formation (like in the nRGB color space) has some drawbacks: the normalization reduces the

sensitivity of the distribution to the color variability and introduces noise in pixels with low in-

tensities [27, 28]. Hue is particularly useful in the cases where the illumination level varies from

point-to-point or image-to-image because when the white reference holds, hue is invariant to cer-

tain types of highlights, shading, and shadows [27]. Furthermore, material boundaries correlate

more strongly with hue than with intensity differences. Shadow boundaries, highlight bound-

aries and transparency boundaries are strongly associated with intensity edges, and less with hue

boundaries.
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But while the image definition in terms of hue, saturation, and value is mathematically valid,

it is important to note that they are only approximations of the human color perception [32]. One

well-known problem of the HSV and related color spaces relies on the non-removable singularity

at the achromatic axis, where R = G = B = 0. A small change in any of the R, G, or B components

may cause a large variation in the transformed values, creating discontinuities in the representation

of colors. When the saturation is low, the hue component gets unstable, and thus, unreliable to

describe pixels [27]. Take for example, pixels whose HSV values are (x,x,0) where x ≥ 0. For

8-bit digital implementation (i.e., hue in the range of [0,255]) a minimal digital perturbation gives

(x+1,x,0), which can result in changes up to Π/3.

Hue based models present another significant shortcoming with respect to the definition of

saturation. Mathematically, saturation is defined as a percentage of the maximum saturation in a

given intensity. Through the hexconic representation we may note that, according to the intensity,

the maximum value for the saturation varies from 0 (apex) to 1 (base) in the HSV model, while

varies from 0 (lower apex) to 1 (center) to 0 (upper apex) in the HSL and HSI. It means that in the

HSV the intensities close to the black vertex present a saturation range very small. In the same

way, it means that for the HSL and HSI models, not only very low intensities but also very high

intensities present such small saturation range. Thus, slight variations of intensity in those regions

may imply in a significant variations in the saturation component. In practice, such variations are

responsible to the introduction of noise for dark regions in the HSV (i.e. shadows), and for dark

and light regions in the HSL and HIS color models (i.e. reflections) [34].

Despite of the perceptual uniformity, CIE hue only approximates additive/shift invariance due

to its non-linear cube-root transformation and normalization [28]. Moreover, the assumption that

CIE-Lab and CIE-Luv colors are uniformly distributed is only partially valid. Actually, the equiv-

alence between Euclidean and perceptual distances holds only for small distances. For larger dis-

tances, the most we can say about a pair of colors is that they are different, thus simply measuring

Euclidean distance in CIE-Lab is insufficient to accurately describe a color [59].

Throughout this thesis it is assumed that the relationship between the energy measured by the

sensor and the image data is linear. In fact, several of the methods, deductions and formalities

discussed are only valid in scenarios were this premise is true. Since the sRGB color space is

device independent and allows to exchange images between different machines, it is reasonable

to assume that the image was stored using this representation [60] in situations were nothing is

known about the process on how the image was created. Therefore, before any other kind of

image processing, one needs to restore the linear relationship between image data and measured

intensities.

Regarding the Diagonal Model, several works [61, 62, 63, 64, 65, 66, 67] point out that the effi-

ciency of the model is intrinsically related to the sensors of the vision system. It was demonstrated

that, whether or not the sensors are narrow band and whether or not their sensibility functions

overlap, has a significant impact on the accuracy of von Kries adaptation. Sensors that do not

behave as delta functions result in non-zero off-diagonal elements in the transformation matrix

(relating object reflectance to receptor stimulation), which prevents the Diagonal Model to hold
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properly.

It has been shown in the literature that it is possible to overcome such camera issues through

the use of narrow band illumination. In [61], Worthey demonstrates that narrow band illumination

in "not so narrow band" sensors produces similar effects as broad band illumination in narrow

band sensors. Nevertheless, this method is not feasible in practice, since most of the time it is not

possible to control the illuminant of real world images. One method, however, that improves the

results in real world images is the spectral sharpening. When sensors are not completely narrow

band it is possible to simulate this behavior by artificially sharpening the camera sensor response

through linear transformations of the sensor functions [68, 69, 70].

Concerning the local image feature detectors, Harris corners demonstrate itself as an attractive

option since it is of simple implementation, and invariant to translations and rotations. The lack of

invariance to scale, though, is one limitation of the original algorithm. Harris-Laplace approach,

on the other hand, solves this problem by selecting the points in the multi-scale representation

which are present at characteristic scales. Moreover, the algorithm handles the problem of affine

invariance by estimating the affine shape of a point neighborhood.

One drawback of both algorithms consists in the way local feature points are described. Harris

describes the local neighborhood of a point by directly storing the raw image intensity values from

a small square window around the point. This has the advantage of simplicity of computation,

but it lacks invariance to lighting, rotation, and viewpoint changes. Another shortcoming of the

multi-scale Harris detector is that the algorithm extracts many points which are repeated at the

neighboring scale levels. This in turn increases the matching complexity and the probability of

mismatches. [49].

SIFT and SURF demonstrated to be very robust detectors, with invariance to several image

transformations. When concerning only with robustness and repeatability, SIFT seems to outper-

form SURF in several scenarios. However, there are other factors that should be considered in

the election of a detector and descriptor for visual odometry. An important parameter in this se-

lection is the computational cost of the detection and description methods. The SIFT algorithm

is, therefore, less suited to continuous tracking of real-time computer vision tasks due to the high

computational cost of its extraction, description and matching stages. SURF, on the other hand,

has a lower computational cost compared to SIFT [55], and its simplified assumptions allows the

online extraction of visual landmarks.



Chapter 3

Intelligent Wheelchairs

Intelligent wheelchairs can become an important solution to assist physi-

cally impaired individuals who find it difficult or impossible to drive regu-

lar powered wheelchairs. In this chapter we describe the main concepts and

the design of the IntellWheels intelligent wheelchair, and propose a shared

control methodology based on the idea that the wheelchair is immersed in

a field of potential forces. Due to the lack of realism of the first version of

the IntellWheels simulator, we develop a new wheelchair simulator taking

advantage of one general robotics simulator. We also propose a hardware

design that aims to reduce the visual impact caused by the assemblage of

sensor and actuators in the wheelchair. Experimental results demonstrate

that the shared control methodology was able to reduce the number of col-

lisions in more than 75%. The assessment of popular robotic simulators

indicated that USARSim was the simulator whose features better matched

the IntellWheels project requirements, and a new IntellWheels simulator

was built using Usarsim as its base. Finally, a public opinion assessment

suggested that IntellWheels design was effective to mitigate the visual and

ergonomic impacts caused by the addition of its sensorial and processing

capabilities.

3.1 Introduction

An intelligent wheelchair (IW) can be defined as a motorized device with a chair, in which an

artificial control system augments or replaces the user control in order to assist physically impaired

individuals [71]. The main difference from regular powered wheelchairs is that IWs are provided

with a sensorial system and processing capabilities to reduce or eliminate the user’s task of driving.

According to Braga et al. [15, 16] and Jia et al. [72], the main capabilities of an IW are:

47
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• Extended human-machine interaction through distinct types of devices such as joysticks,

touch-sensitive display, voice, facial expressions vision and other sensors based control like

pressure sensor;

• Perception of the environment;

• Obstacle avoidance capabilities;

• Autonomous navigation;

• Cooperation with the user (shared control);

• Communication and collaboration with others devices, such as automatic doors, elevators

and others wheelchairs.

According to Fehr et al. [73], 91% of the clinicians believe that robotic wheelchairs with

automated navigation systems can be useful at least for a few users, and 23% believe the systems

can be useful for many of them. Another recent study, conducted by Simpson et al. [4], estimated

that between 61% to 91% of all the wheelchair users would benefit somehow from the features

of intelligent wheelchairs. Therefore, investment in research and commercialization of intelligent

wheelchair have much greater potential impact than previously thought.

This chapter presents three contributions to the development of intelligent wheelchairs. The

first deals with the development of a generic hardware framework, which design concerns with

minimizing the visual and ergonomic impacts of the addition of sensing and computational capa-

bilities. The second is the assessment of robotic simulators, which considered seven criteria to

compare and select the simulator that better matches the requirements of the IntellWheels project.

Finally, the third contribution proposes a shared control methodology that is effective to avoid col-

lisions, and yet simple enough to run in real-time in embedded systems with limited computational

capability.

The outline of the chapter is the following. Section 3.2 presents relevant related works in the

areas of intelligent wheelchairs and obstacle avoidance. Section 3.3 presents a description of the

IntellWheels project. Section 3.6 address the problem of obstacle avoidance. Section 3.7 presents

the results of the local obstacle avoidance experiments, as well as the assessment of robotic sim-

ulators and of the visual appearance of the IntellWheels prototype. Finally, the summary and

conclusions of this chapter are presented in Section 3.8.

3.2 Literature Review

3.2.1 Intelligent Wheelchairs

One of the first projects of an autonomous wheelchair for the physically handicapped was proposed

by Madarasz et al. [74]. In 1986, they presented a wheelchair equipped with a microcomputer,

a digital camera and an ultra-sound sensor. Their objective was to develop a vehicle capable of
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operating without human intervention in populated environments, with little or no collisions with

objects or people. In this project, the camera was used to recognize moving objects, artificial

landmarks, previously identified objects (such as the number of the rooms and elevators) as well

as drive the wheelchair in the center of the corridors. Ultra-sound sensors were used to determine

the relative distances towards objects, and to orient the wheelchair regarding walls and corridors.

In some situations, the information from both sensors were combined, such as to verify whether

the elevator’s door is open or closed.

From 1987, The University of Edinburgh’s CALL Centre developed a intelligent wheelchair

prototype (CALL Centre Smart Wheelchair) for children with severe and multiple disabilities

who could not use ordinary mobility aids [75]. The project performed a qualitative evaluation

about the effective use of intelligent wheelchairs as means to increase the mobility, communica-

tion and education of the children that used the wheelchair. For validation, twelve prototypes were

tested in three schools for children with special needs. The CALL Centre Smart Wheelchair is

equipped with bumpers to protect the pilot and the environment from collisions, ultra-sound sen-

sors to reduce the wheelchair speed in the proximity of objects and a track follower to enable the

wheelchair to follow lines on the floor, and a computer. Regarding the human-machine interface,

the wheelchair can be driven by single or multiple switches, a scanning direction selector, and

proportional joystick. In [76] Nisbet emphasized that the focus of the project was to design an

intelligent wheelchair to complement the user skills, since a fully autonomous vehicle would pro-

vide low therapeutic effects. The wheelchair control is seen as symbiotic partnership between the

user and the wheelchair. The CALL Centre Smart Wheelchair is manufactured by Smile Rehab

Limited [77] since 2000 and is one of the few intelligent wheelchairs currently available on the

market.

Hoyer and Holper [78] first presented the OMNI (Office Wheelchair with High Maneuverabil-

ity and Navigational Intelligence for People with Severe Handicap) project in 1993. The name

of the project comes from the omnidirectional robotic base used to facilitate the navigation in

cluttered environments. The wheelchair architecture is modular, composed of different locally in-

telligent units, which enables a flexible reaction and increases the reliability because of a mutual

verification of the transferred data. The control system was divided into low level control (includ-

ing motion control, sensors module and robotic arm), high level control (trajectory planning and

task planning) and interface (voice control, keyboard and joystick) [79]. In its initial architecture

the project presented the robotic arm MANUS, and interesting functionalities like autonomous and

semi-autonomous navigation, obstacle avoidance, and some specific functions like driving along

a wall and driving through a door

NavChair started in 1991 with US$ 330,000.00 dollars in funds and a three year duration. The

prototype is based on a commercial powered wheelchair assembled with a computer, ultra-sound

sensors, motor controller and joystick [80, 81]. The functionalities developed in the wheelchair

are obstacle avoidance, wall following, and doorway navigation. The project implemented and

tested a shared control system, in which user and wheelchair share the control of the wheelchair

in order to yield safer navigation.
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From 1995, Miller and Slack [82] designed Tin Man I prototype based on a low cost powered

wheelchair assembled with encoders, bumpers, infra-red sensors, ultra-sound sensors, a digital

compass and a microprocessor. Initially, the system had three modes of operation: manual control

with obstacle avoidance; autonomous driving through a pre-defined trajectory; and autonomous

driving to a specific point (x, y). Later, the project evolved to Tin Man II in order to re-design

its user-machine interface, increase its operation speed and reduce its dependency to bumpers. In

addition, new navigation capabilities was also designed, such as the ability to store travelled in-

formation, return to the starting point, follow walls, navigate through doors and charge the battery

autonomously. By including some of Tin Man’s capabilities, the Maid project [83] is designed

to navigate in two particularly difficult and tiresome situations, respectively narrow cluttered en-

vironments and through wide crowded areas. Wellman et al. [84] proposed a hybrid wheelchair

equipped with two legs, in addition to its regular four wheels - enabling the wheelchair to climb

over steps and to move through rough terrain.

The project FRIEND (Functional Robot arm with user-frIENdly interface for Disabled peo-

ple), developed by the University of Bremen, is a robot for rehabilitation whose main goal is

to assist impaired individuals with limited locomotion. In its first version, FRIEND was com-

posed by a powered wheelchair and the robotic manipulator MANUS with six degrees of freedom

[85, 86]. Both wheelchair and manipulator were controlled trough a touch-sensitive screen and

voice commands. In 2005, the system evolved to a second version (FRIEND II) that extended

the hardware [87] and implemented a new multiple layer software architecture [88]. The goal of

the new software architecture was to facilitate the interaction with smart devices of a household

environment by adapting or generating new sequences of actions. The framework was divided into

three parts (hardware, skills and sequential control), in a modular fashion that used the Common

Object Request Broker Architecture (CORBA) to communicate between each other.

Smartchair is an intelligent wheelchair designed in the GRASP lab of the University of Pen-

silvânia. The prototype has one monocular and one omnidirectional camera, one video projector,

infra-red sensors, encoders, one laser scanner, one GPS and one embedded processing board.

Among the modes of operation, the user can choose to navigate autonomously to a given destina-

tion, navigate in the hallway, navigate through doors and manual navigation with obstacle avoid-

ance [89, 90, 91]. The cameras were used both for recognition of artificial landmarks and well

as for estimation of the wheelchair orientation in indoor environments. Preliminary experiments

were also performed in order to evaluate the use of GPS in outdoor environments,

SENA is currently under development in the University of Málaga, Spain. It is one of the

few IW projects that concerns with the communication system between wheelchair modules. The

prototype is based on a commercial powered wheelchair equipped with laser scanner, infra-red

sensors, sonars, encoders and a CCD camera, and controlled by a computer connected to a mi-

crocontroller through a USB connection. SENA architecture was initially based on a 3 layer

structure named Architecture for Cognitive Human-Robot Integration (ACHRIN), developed to

facilitate the participation of the user in the wheelchair tasks, including deliberation and plan

execution. The architecture later evolved to a multi-agent system called MARCA (Multi-Agent-
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based Robotic Control Architecture), due to some deficiencies of the previous model, like its rigid

client-server communication and the lack of mechanisms that allow redundancy. The communi-

cation between agents was designed to transmit messages using the FIPA-ACL protocol [92], and

a reinforcement learning methodology was incorporated in each agent [93].

RoboChair aims to develop a high performance low cost intelligent wheelchairs to assist el-

derly and physically impaired people. The project is focused on two levers of complexity: one is

an intelligent control system to achieve good control stability and fast image processing capability.

Another is a friendly user interface for voice control, emotion and gesture detection, as well as a

wireless vision system for carers or relatives to monitor and communicate remotely. The combi-

nation of Adaboost Face Detection and Camshift object tracking algorithms resulted in a real-time

hands-free wheelchair control through face detection and gesture recognition. RoboChair is also

able to identify localization landmarks, follow walls, avoid obstacles and navigate autonomously

[72].

ACCoMo (intelligent wheelchair as Autonomous, Cooperative, COllaborative MObile robot)

[94] is a prototype of an IW that allows handicapped individuals to move safely in indoor en-

vironments. The prototype is based on a powered wheelchair with infra-red sensors, camera, a

computer and a touch-screen display. Through its multi-agent system, ACCoMo claims to be able

to provide an autonomous navigation with obstacle avoidance, a cooperative behaviour with other

wheelchair and a collaborative behaviour with the user. The system intelligence is given by rein-

forcement learning, neuronal networks and genetic algorithms. The navigation is based on metric

maps of indoor environments and localization is performed through Radio Frequency IDentifier

(RFID).

The Mobile Internet Connected Assistant (MICA) project from the EISLAB, focused on find-

ing assistive technology solutions to help wheelchair users in their daily life [95]. The prototype

is equipped with a computer, a fiber optic rate gyroscope, a laser scanner and two encoders, and

spans in the area from navigation techniques to the design aspects of intelligent wheelchairs [96].

The MIT intelligent wheelchair project (Wheelesley) proposes to enhance ordinary powered

wheelchairs equipping it with distance sensors to perceive the surroundings, a wireless device for

room-level location determination, and motor-control software to effect the wheelchair’s motion.

However, the main focus of MIT research has been the development of a speech interface to

interpret and follow natural language directions [97].

The University of Leuven presented the project Sharioto, which is based on a powered wheelchair

equipped with different ultrasonic sensors, infrared sensors, one laser scanner and with a gyro-

scope. Sharioto proposes shared control that attempts to estimate the user’s intent from user’s

noisy input signal (a joystick) and the interaction with the perceived environment to generate nav-

igational behaviors [98].

The intelligent wheelchair prototype from the University of Shiga [99] is based on a six

wheeled powered wheelchair equipped with infra-red sensors and a computer. They propose

an obstacle avoidance algorithm based on neural networks to provide aid for people who find

it difficult or impossible to drive a conventional wheelchair. For that Shiga’s prototype vary the



52 Intelligent Wheelchairs

connection weights of the neural network according to the distance to obstacles in the vicinity of

the wheelchair, and thus, improve the obstacle avoidance function.

In addition, other important projects present solutions to some common issues faced by indi-

viduals with limited mobility, such as the intelligent navigation system discussed in SENARIO [100];

the autonomous and semi-autonomous movements of VAHM [101]; the obstacle avoidance and

shared-control system of Rolland [102]; the motion control of Vulcan from the University of Texas

Austin [103]. Other projects present alternatives for human-machine interaction, like the interface

designed in SIAMO [104], the recognition of facial expressions developed in [105] and [106], and

the use of electromagnetic waves of the brain [107, 108].

Currently there are several active international projects. RADHAR [109, 110] that proposes

a framework to fuse uncertain information from both environment perception and the driver’s

steering signals in order to estimate a safer trajectory to the wheelchair. LURCH [111], that

aims to extend the user command interface as well as perform autonomous and semi-autonomous

navigation. ARTY project [112], which focuses in developing an intelligent pediatric wheelchair

and the project from the University of Zaragoza [113, 114] that focus on mobile robot navigation

and brain-computer interfaces.

In Portugal four other projects proposed solutions to assist physically impaired individuals.

ENIGMA [115] is a robotic omnidirectional base developed at the University of Minho. Recently

it is being used for the study of some applications of gestures commands. Magic Wheelchair is a

gaze driven IW, which is part of the MagicKey Project from the Polytechnic Institute of Guarda

[116]. RobChair is the intelligent wheelchair project developed in the University of Coimbra.

The wheelchair is steered with voice commands and assisted by a reactive fuzzy logic controller

[117]. The prototype is based on a powered wheelchair with twelve infra-red sensors, four ultra-

sound sensors, a front bumper and two optical encoders [118, 117]. The prototype aims to assist

the locomotion of impaired people providing autonomous and semi-autonomous navigation with

obstacle avoidance [119]. Robchair presents a distributed modular architecture interconnected

through a CAN bus. The control module follows the classic subsumption architecture proposed

by Rodney Brooks [120]. Table 3.1 is an extension of [121], and summarize details of the most

relevant intelligent wheelchair projects.
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ACCoMo [94] 3 3 3

Arty [112] 3 3

ASU [74] 3 3 3

A.G.W. [122] 3 3

CALL Centre [75] 3 3 3

CHARHM [123] 3

COACH [124] 3 3

CPWNS [125] 3 3

CUHK [126] 3

CWA [127] 3

Enigma [115]

FRIEND [88] 3 3

Hephaestus [128] 3 3

INCH [129] 3 3

INRO [130] 3 3 3 3 3

I.W.S [131] 3 3 3

IntellWheels [16] 3 3 3 3 3

KU [132] 3

LOUSON III [133] 3 3 3 3

LURCH [111] 3 3 3

Magic [116] 3 3

MAid [83] 3 3 3 3 3

Mister Ed [134] 3 3 3 3

Mr. HURI [135] 3 3

NavChair [80] 3 3

NLPR [136] 3 3 3

OMNI [78] 3 3 3 3

Orpheus [137] 3 3

Phaeton [138] 3 3 3 3

RADHAR [110] 3 3 3 3 3

RobChair [118] 3 3 3

Continued on next page
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Table 3.1 – Continued from previous page
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RoboChair [72] 3 3

Robotic Wheelc. [139] 3 3 3

Rolland [102] 3 3 3 3 3

SENA [140] 3 3 3

SENARIO [100] 3 3

Siamo [104] 3 3 3 3 3 3

SIRIUS [141] 3 3

Smart Alec [142] 3 3

SmartChair [90] 3 3 3 3

SPAM [143] 3 3 3 3

SWCS [144] 3 3 3

TAO [145] 3 3 3

TetraNauta [146] 3 3 3 3

The Wheelchair [147] 3 3 3

Tin Man II [82] 3 3 3 3 3

TUT [148] 3 3 3

UNIVPM [149] 3 3

UOP [150] 3

UP [151] 3 3 3 3

VAHM P2 [101] 3 3 3 3

V-c-A [152] 3 3

Vulcan [103] 3 3 3 3

WAD [153] 3 3 3

Watson [154] 3 3

Wheelesley [155] 3 3 3 3 3
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3.2.2 Obstacle Avoidance Methodologies

Considered one of the first methodologies proposed to avoid obstacles during robot navigation,

edge-detection became popular in late eighties. The algorithm starts with the robot in a stationary

state. Through ultrasonic-sensor readings, it performs a panoramic scan of the environment. With

the distance measures, an edge-detection algorithm tries to map the position of the vertical edges

of the obstacles in the robot surroundings. Once new edges are found, a temporary map is updated

and an optimum path planning algorithm is applied to plan the robots subsequent path [156]. The

robot moves through the path while taking alternate measures of its ultra-sound sensors1. When

an obstacle is detected under a certain safety distance, the robot stops and restarts the cycle all

over again [157, 158]. Edge-detection methodology is not itself an obstacle avoidance technique.

Actually, it can be better described as an approach to represent the environment based on geomet-

rical primitive line segments. Therefore, off-line path planners are still needed in order to yield

obstacle-free paths, limiting its implementation in low-resource embedded systems.

Certainty grid (CG) method is a probabilistic representation of obstacles in a grid based world

model. This world model has been developed for mobile robots in Stanford and CMU for more

than ten years, and was originally designed to handle sonar’s inaccuracies shortcomings [159].

In this method, the robot’s work area is modeled as a 2-D array of square elements, called cells.

Each cell of the grid contains a likelihood estimate (certainty value) that indicates confidence that

an obstacle is placed within the corresponding region of space. Once readings are more likely

to detect objects closer to the acoustic axis of the sonar, a probabilistic function updates more

the certainty value in this region than in the other areas enclosed by the sensor [159, 160]. In

spite of some improvements presented by CG methodology, some drawbacks can compromise its

implementation in real-time applications. Firstly, the accuracy provided is too much dependent of

the cell size. Secondly, as the robot moves over large areas, lots of memory and processing power

are required, restricting the application of CG especially in some embedded systems. Finally, the

subsequent robot’s path is computed by a global path-planning, usually off-line.

Introduced by Borenstein and Korem [156], the Vector Field Histogram (VFH) uses a polar

histogram instead of a 2-D Cartesian grid to avoid collisions and steer the mobile robot to the

target. This method employs a two-stage data reduction process in order to compute the control

command to the robot. In the highest level of data, VFH stores a detailed 2-D histogram grid

map of the robot’s neighborhood. As just only one cell in the histogram is updated for each range

reading, it takes just a small computational overhead. Thus, a probabilistic distribution is obtained

by continuously and quickly sampling each sensor while the robot moves [161]. At the second

level, data is mapped onto a one-dimensional polar histogram that comprises n angular sections

each with width α . Each sector in the polar histogram contains a value representing the polar

obstacle density in that direction. Finally, based on the obstacle polar density (1-D histogram),

1To avoid the interference of the sound waves of one sonar into another, one alternative is not to range all ultra-
sound sensors at the same time. Since each range takes around 80ms, a full panoramic scan of the environment is only
performed with the robot stopped
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VFH selects the best steering direction for the robot and computes the reference values for driving

the robot (third level of data representation) [156].

As can be observed, the VFH overcomes some issues shown by the other methods described

above. In fact, the influence of low accuracy distance measures is minimized through the histogram

representation. In addition, the world representation is restricted to the robot’s surrounding trough

a bi-dimensional sliding window, reducing the computational overhead. On the other hand, local

minima problems are still not solved by the algorithm itself, which has to invoke a global path

planner when these situations are flagged. Finally, like edge-detection and CG methodologies,

VFH depends not only from the data gathered by the sonars, but from an accurate localization

system. Otherwise, inaccurate robot’s position can introduce more errors and disturb the object

mapping.

First suggested by Andrews and Hogan [162] and Khatib [163], the Potential Fields method-

ologies (PF) relies on a simple and powerful principle, the artificial potential field concept. In

this method, the robot is considered immersed in a potential field generated by the target and by

obstacles. In this field, obstacles generate imaginary repulsive forces, while the target generates

an attractive force to the robot. The resultant robot behavior is obtained by the sum of all attractive

and repulsive forces at a robot’s given position.

After the original work, a number of improvements and extensions have been published.

Krogh [164] has computed forces not only to steer the robot around objects, but to set its speed

as well and Seiki [165] has introduced the consideration about the nonholonomic motion con-

strains and the robots shape into the PF. Khatib and Chatila [166], considered, besides distance,

the robot’s relative orientation to the obstacle in order to compute forces. Bicho [167] imple-

mented a dynamic approach using low level sensory information, in which each sensor generates

a repulsive force that drives the direction and the speed of the robot.

In its original version the PF methodology exhibit many shortcomings, in particular the sensi-

tivity to local minima that arises mostly due to the symmetry of the environment. Furthermore, it

tends to be very susceptible to misreading (since it takes into account just one set of data) and to

the sonar most common issues. Some versions still assume a known and prescribed world model

to evaluate off-line the potential field. Finally, some implementations present significant problems

related to oscillations in narrow passages and in the presence of obstacles [156, 168]. The potential

field concept is a specially interesting approach because it can be easily adapted to avoid the map-

based obstacle representation, and thus to run on embedded systems with limited computational

capability.

3.3 Overview of the IntellWheels Project

Despite the several projects under development, there is not a generic model for transform a reg-

ular powered wheelchair into an intelligent wheelchair. Usually, these projects have hardware

and software architectures specific to the model of the wheelchair used in the project, are cost

prohibitive for most potential users and typically requires a very difficult configuration.
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In an attempt to address some of these issues, the Faculty of Engineering of the University of

Porto (FEUP) in collaboration with the Artificial Intelligence and Computer Science Laboratory

(LIACC), the INESC Technology and Science associated Laboratory (INESC TEC), the Institute

of Electronics and Telematics Engineering of Aveiro (IEETA), the School of Allied Health Sci-

ences of the Polytechnic Institute of Porto (ESTSP), the University of Minho (UMINHO) and the

Portuguese Association of Cerebral Palsy (APPC) developed the project IntellWheels. The focus

of the project is to develop an intelligent wheelchair with flexible multimodal interface that facil-

itates the development and test of new methodologies and techniques, and whose integration into

commercially available powered wheelchairs may be performed with only minor modifications

[16].

IntellWheels is modeled using the multi-agent system (MAS) architecture in order to facilitate

the integration of new abilities to the wheelchair. Another advantage of such an approach is that

agents can show self-organization behavior, which can emerge through simple individual strate-

gies. The IntellWheels MAS architecture was designed to follow the standards of the Foundations

of Intelligent Physical Agents (FIPA) [92] in order to promote the interoperation of heterogeneous

agents and the services that they can represent [169]. The MAS is better explained when subdi-

vided into macro and micro perspectives. In a micro perspective, each wheelchair is composed

of several micro agents (i.e. intelligence, control, interface, etc.). In a macro perspective, each

wheelchair is represented by a single macro agent, just as other agents present in the system (i.e.

door agent, logger agent, etc.). Figure 3.1 depicts IntellWheels software architecture, with the

wheelchair agents modeled in the platform. The tasks performed by each of the micro agent that

comprise an intelligent wheelchair macro agent are briefly described below:

• Cognitive Agent: responsible for the Strategic layer. This agent defines the IW global goal

and the sequence of intermediate high level objectives required to fulfill the global task.

Once intermediate objectives are defined, the agent can then generate a plan with the se-

quences of basic actions.

• Control Agent: responsible to provide the wheelchair with the Tactical control (middle level

control). The middle level performs the control of basic actions, like follow line, spin,

follow wall, goto XY. In addition, it also computes the reference speed (wheelchair’s linear

and angular speeds) and communicate with the wheelchair.

• Interface Agent: The Interface Agent is responsible for collecting user inputs (through the

Multimodal Interface module), and to display the most relevant information (e.g. sensor

readings, speed, position) through a graphical user interface (GUI). In addition, it is also

responsible for making the interaction between the user and the other agents of the system.

• Perception Agent: This agent represents the perception system of mobile robots. Its tasks

are read the sensors, update the world representation, perform the wheelchair localization

and map the environment.
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Figure 3.1: IntellWheels Software Architecture.

Other agents, designated as Services Agents, were created to assist the IW system to achieve

its global goals. Services Agents can cooperate and collaborate with the agents embedded in the

mobile robot. The Door Agent is responsible for controlling the doors and gates in the IW environ-

ment, opening and closing doors to allow or inhibit access in restricted areas. The Logger Agent

is responsible for creating permanent log files about the messages exchanged between agents, in

order to assist the debugging process and system analysis. The Wheelchair Actions Watcher Agent

is responsible for centralizing the control of all traffic in the IW environment, thus avoiding traffic

conflicts. The role of this agent is to monitor all activities and actions when necessary so as to

avoid potential conflicts and to solve possible deadlocks. The Assistant Agent is responsible for

system-wide human interaction, as well as for receiving and handling global goals. This agent is

the interface between nurses, doctors, therapists and assistants with the IW system.

In this system, an IW can assume bodily form in three different modes, real, virtual and mixed

reality. To instantiate the body of the wheelchair, it is necessary to use the hardware for the real

robot, the simulator for the virtual robot or both for the mixed reality. In face of that, one of

the most innovative features of the platform is that it allows interactions between real and virtual

IWs. These interactions make high complexity tests possible, with a substantial number of objects,

devices and other wheelchairs. Furthermore, it implies a large reduction in project costs, once it is

not necessary to build a large number of real IW to perform interaction tests [19].

3.3.1 User Inputs

The project has a deep concern in providing assistance to individuals with distinct impairments.

Therefore, eight types of user inputs are currently supported. By providing a broader range of

inputs, we aim to give to the user the capability to choose the most comfortable and suitable way

to drive the wheelchair. In addition to the traditional joystick, the user has the option to use a game

joystick, which has many configurable buttons that can be customized to trigger high level actions
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[17, 18]. Through the keyboard and touch-screen display, users and technical staff can setup the

IW parameters.

Another form of interaction includes the head gestures input, which allows elderly and dis-

abled people to steer the IW according to the position of their head. The head gestures input is a

device designed in the framework of the IntellWheels project, and consists of a cap fitted with a

3-axis accelerometer/inclinometer that communicates via Bluetooth with the computer [15, 170].

Through the multimodal interface, the wheelchair user can choose to use the cap to trigger high

level commands, or use it as a proportional controller where the position of his head is translated

into the wheelchair linear and angular speed. The Facial expressions input allows the wheelchair

to recognize some simple facial expressions, which can be associated with middle (i.e. go for-

ward, turn right, turn left) and high level actions (i.e. go to the dining-hall, go to the bedroom)

[171, 172]. IntellWheels also support voice control by capturing spoken commands through a

microphone, converting the speech into text (through the Windows speech API) and triggering an

action. Finally, the integration of a commercial brain computer interface that recognizes facial

expressions and thoughts is been tested, but due to its low accuracy it is still very difficult to use

this device to enable safe and robust commands to the intelligent wheelchair [173]. An evaluation

of the distinct input methods available to control the wheelchair is presented in [174].

3.3.2 Navigation System

The Navigation System is responsible for performing the wheelchair’s sensors treatment, local-

ization and driving the wheelchair between different locations. The user control module is the

application in which the user defines the type and parameters that the controller will use for au-

tomatic mode. After choosing one of seven types of actions (following the line, point, the angle,

following the left wall, the right wall, wait, stop) several parameters and configuration fields be-

come available to the user. There is also the possibility of creating a sequence of actions (each

one with its individual configuration and objective). Once the objective of the current action is

completed, this action is deleted and the next action is performed [175, 176].

The localization system of IntellWheels is based on dead reckoning techniques [19, 15]. It

estimates the state of the robot at the current time-step k, given previous knowledge about the ini-

tial state and all measurements up to the current time. Typically, a three-dimensional state vector

p = [x;y;θ ]T is used to represent the position and orientation of the robot. The position estimation

of a robot based on sensor data is one of the fundamental problems of mobile robotics. The prob-

abilistic robotics paradigm was used in ours odometry motion model. This paradigm pays tribute

to the inherent uncertainty in robot perception, relying on explicit representations of uncertainty

when determining what to do. Viewed probabilistically, perception is a statistical state estimation

problem, where information deduced from sensor data is represented by probability distributions

[177]. The wheelchair has a typical differential drive configuration, where the two incremental

encoders are mounted to count the wheel revolutions. Relating the pulse increment with the sam-

pling interval and the nominal wheel diameter it is possible to express the wheelchair displacement

and rotation in the Cartesian frame [6]. Through the Odometry Motion Model presented in [178],
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Figure 3.2: IntellWheels Multi-level Control Architecture.

the computed uncertainty was used to estimate odometry errors and plan the wheelchair path to

cross artificial landmarks.

Figure 3.2 depicts IntellWheels multi-level control architecture, subdivided into three layers:

strategic layer (goal planning and path planning), tactical layer (control of basic actions, and linear

and angular speeds) and basic control layer (control of wheel speeds) [179]. A goal planner was

implemented with Planning Domain Definition Language - PDDL [180]. The planning graph is a

powerful data structure that encodes information about which states may be reachable, and provide

a sequence the intermediate objectives required to achieve the global goal (high level action given

by the user). The system than generate a path in order to achieve the objectives proposed by the

planner, taking into account information from the world model. To find a path from a given initial

point to a given goal point, the system has an adapted A* Algorithm implemented [176]. Later,

the tactical layer of the control module subdivide the path into basic forms (lines, circles, points),

and computing the wheelchair’s linear and angular speeds to put the wheelchair into motion [176].

Finally, the lowest level of control (Basic Control Layer) converts linear and angular speeds into

wheel speeds send them through serial communication to the interface board.

3.3.3 Communication System

Safe communications in open transmission systems, safe navigation, obstacle avoidance, and oth-

ers, are some constraints applicable to mobile robots and IWs. With the proliferation of Wi-Fi

technologies and devices, the current way in which communications occur is evolving. While

these new technologies present advantages, they also have some disadvantages, specifically in the

field of safety-related systems or safety-critical systems (a system that in the event of a failure can

damage individuals, properties or the environment) [181].

If a mobile robot is a safety-related system or part of one, the communication system must

prevent failures and prove to be safe for unauthorized access, while maintaining the desired level

of compatibility with the system’s available physical media transmission layers. To address and

solve these issues, the standard EN 50159-2 [182] must be followed. It describes the known threats
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to communications and their defensive methods applicable for safety critical systems that use open

transmission media layers.

Usually, a multi-agent platform as the Java Agent DEvelopment Framework (JADE) [183]

would be used to enable communications and organize the different agents. However, with com-

mon multi-agent platforms, it is not possible to customize and enhance its functionality to better

adapt the system to safety-critical problems. The solution to this problem, in this project, was to

develop new methods in a new multi-agent platform.

The IntellWheels communication system was implemented in Object-Pascal, following the

FIPA guidelines for the ACL [92], and a set of services, such as an Agent Management System, a

Message Transport System and a Directory Facilitator. The system’s architecture was designed as

five separate layers, with their respective receiving and sending handling methods, and interfaces

running in parallel. This way, it becomes possible for the user to choose which layers should be

applied to the application, without compromising the agent’s functionality, while following the

OSI Reference Model and implementing fault tolerant methods.

The Communications layer is responsible for receiving and sending messages from and to the

message transport layer. This layer prevents the interpretation of repeated messages, present in

the physical media, and enables the retransmission of messages, thus preventing packet loss at the

network level. It also prevents the application from receiving messages with a size that is larger

than the one specified by the user during agent implementation. The Security layer is responsible

for the message’s security, preventing the interception and modification of messages. The En-

cryption method is chosen according to the message’s destination and the platform knowledge at

that moment. The possible encryption methods involve the use of a private and public key pair

or an AES pre-shared key. It also performs message integrity checking by cross-referencing the

message with the transmitted message’s hash. The Temporal layer is responsible for adding time

restrictions to the messages. These restrictions can be seen as a defensive measure. By adding a

timestamp to the message’s data, it would be possible to filtrate outdated messages. Finally, the

Parser layer is responsible for the construction of the message according to the FIPA-ACL stan-

dard and represented using the normative constant FIPA-SL. It also selects the messages that are

accepted by the application according to their correct structure configuration and to the sender’s

presence in the platform, thus stopping any communication from an unauthenticated application.

Crucial to this architecture is the election of a Container entity, similar to JADE, and the dis-

tribution of a Local Agents List (LAL), as well as a Global Agent List (GAL), using a message-

oriented paradigm. These lists contain the application’s configurations that enable communica-

tions and distribution of the public encryption key between agents. The Container was designed

to be responsible for the lists maintenance operations that include creation, update and deletion.

However, and contrary to other systems, the Container was not designed as a separate entity or

as the base for agent’s creation and their activity. The idea behind this is that it is admissible and

probable for a wheelchair to lose network connectivity or to change its network configuration, but

it is not acceptable for these changes to cause a system malfunction.
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3.3.4 User Interface

An interface is an element that establishes boundaries between two entities. Currently, most tra-

ditional human-machine interfaces are based on a single and not customizable input/output cor-

relation. An evolution to this paradigm and a way to create a more natural interaction with the

user is to establish a multimodal interaction, which contemplates a broader range of modes and

channels of communication, such as video, voice, pen, etc. According Oviatt [184], a Multimodal

Interface (MMI) aims to naturally recognize occurring forms of human languages, and incorporate

one or more recognition-based technologies (i.e. speech, pen, touch, manual gestures, gaze, body

movements, etc.).

Since the physical disability is very wide and specific to each individual, it is important to

provide the largest possible number of input methods in order to try to cover the largest possible

number of individuals with different characteristics. Therefore, IntellWheels MMI is designed to

allow the simultaneous connection of several input devices, and assist users with a wider range

of symptoms and physical capabilities [185]. Since this is a system that aims to be used by dis-

abled people, safety is of extreme importance. In order to avoid the potential accidents caused

by the false recognition of user commands, the proposed methodology allows the user to define

sequences of inputs, which are subjected to a reliability test [186]. Such sequences are composed

of inputs from the same input device (homogeneous inputs), as well as inputs from different input

devices (heterogeneous inputs). Thus, users can define the most suitable input sequences taking

into account their limitations [170]. Each input sequence can than be associated to one of the

actions that the wheelchair is capable to perform. The unique combination between the heteroge-

neous input sequences and their flexible association with wheelchair actions provide the user the

capability to create its own communication language with the wheelchair.

3.4 Hardware Framework Design

Powered wheelchairs are typically composed by a metal frame with four wheels and a seat, bat-

teries, two motors, one motor controller and joysticks. Such configuration is adequate to act in

the environment with the constant supervision of a human operator, however, it does not allow

the wheelchair to perform higher level tasks. To be considered minimally intelligent, a wheelchair

needs to sense its surroundings and react according to changes in the environment, user commands

and goals. Therefore, the standard wheelchair configuration needs to be complemented with ad-

ditional sensors, control electronics and computational hardware. In IntellWheels, this additional

set of metal frames and electronic devices are referred to as hardware framework.

When designing the hardware architecture, most projects of intelligent wheelchair concerns,

in fact, with solutions to robotics problems. Such solution-centered designs tend to disconsider the

typical wheelchair users and their limitation. These wheelchair indeed present a desired feature,

or perform better in some situations, but may also create inoperable sophisticated wheeled devices

(at least for individuals with limited mobility). It is not hard to find designs that assemble laser
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Figure 3.3: Architecture of the IntellWheels hardware framework.

scanners in the region between the user legs, bumpers close their feet, sonar rings in from of seat

and a pole over the head.

In this thesis we propose a user-centered hardware design, in which the needs and limitations

of physically impaired users are given attention. Impaired individuals spends a significant part of

their life on their wheelchair, thus user comfort is regarded as a main priority. Since the addition

of any element to the wheelchair may become a nuisance, the proposed design avoided bulky

and heavy sensors, and paid special attention to place all components out of the user workspace.

Only solutions that does not interfere with the normal wheelchair operation are implemented. The

proposed design also seeks to reduce the visual impact of the hardware framework, and maintain its

compatibility with multiple wheelchair brands and models. An intelligent wheelchair system that

requires substantial modification may be impractical for installation in many of the wheelchair

models currently available on the market, interfere with normal service of the wheelchair, and

prevent potential users from obtaining wheelchairs that could provide mobility assistance. For

this reason, we propose a modular system that can be added to a variety of commercial power

wheelchairs with minimal modifications.

The architecture of the framework and its connections with the original wheelchair system

are depicted in the Figure 3.3. A computational unit (Intel core 2, 1.2GHz, 2GB RAM) runs the

multi-agent system that controls the intelligent wheelchair. A laser scanner, with a field of view

(FOV) of 270o, provides to the computer unit distance measures with high accuracy, which in the

future can be used for mapping and localization. Two encoders coupled directly in the motor shaft

are connected to the interface board and provide information about the wheel revolutions, that

in turn are used to estimate the wheelchair displacement and relative localization. Sixteen ultra-

sound transducers, with a field of view of 45o, are connected to the interface board and provide

raw distance information that is used by the obstacle avoidance algorithm to prevent collisions.

A RGB-D camera provides a wide 3D view of the environment with a horizontal FOV of 58o,
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Figure 3.4: Placement and field of view of the distance sensors in the sensor bars. This configura-
tion allows a safety perimeter that extends from 27cm until 80cm.

vertical field of view of 45o and distance ranges from 0.5 to 3.5 meters. An interface board process

information from the encoders and the ultra-sound sensors and send them to the computer unit.

In addition, it is also capable of providing a reactive obstacle avoidance behavior, that will be

detailed in the Section 3.6. The interface board also receives the reference speed of each wheel

from the computer unit and generates the corresponding analogical signal that is sent to the motor

controller. Power for the sensors and interface board is drawn from the wheelchair batteries though

a voltage regulator.

As shown in Figure 3.3, the framework is "inserted" into a power wheelchair control system

between the user’s input device and the wheelchair motor controller. Since most of wheelchair

motor control uses a proprieatry version of CAN bus, intercepting the joystick signal requires

opening the joystick module, reading the wires that carry the joystick signal, and altering the

signal to those wires. To avoid the need to open the joystick module, it would be necessary to

have acess to the bus protocol, or use specific motor controllers that accept signals from external

devices.

Normally, the input device is plugged directly into the motor controller. When the framework

is installed, however, both the input device and the motor controller are connected to the interface

board. The interface board reads the signal from the input device and sends a revised signal

to the wheelchair motor controller. The motor controller then treats the revised signal as if it

came directly from the input device. Under normal circumstances in which the user operates

the wheelchair manually, the revised joystick signal is identical to the original signal. But if an

obstacle is detected, the collision avoidance algorithm alters the joystick signal to avoid collisions.

Two lateral sensor bars hold the ultra-sound transducers, the laser scanner, wires and a plastic

box containing the interface board. Thus, the IntellWheels hardware framework can be easily

attached to standard power wheelchairs from several different manufacturers to convert them into

intelligent wheelchairs. Sensors bars are made of aluminium, which provides a good compromise

between weight and robustness. Its black color makes the set more discreet, and is consistent

with original lines of the wheelchair. The design in two separate bars yields both visual and
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(a) Right and left sides of the the IntellWheels prototype.
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(b) Close-up view of the front of the left sensor bar.
In detail a 2D laser scanner (FOV of 270o) and ultra-
sound sensors (FOV of 30o).
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Figure 3.5: IntellWheels prototype. A special attention was given to the design of the sensor bars
to minimize its interference with the normal service of the wheelchair. Note that because the two
sensor bars are not physically connected, the framework does not interfere in normal operations
required for transportation purposes (like battery removal and wheelchair folding). Objects located
in the front and in the back of the wheelchair are detected by the ultra-sound sensors assembled in
the rounded tip that fits in both extremities of the sensor bars.
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operational advantages. The assemblage of the sensors bars do not interfere with the normal

battery removal or wheelchair folding, operations usually required to facilitate the transportation

of several wheelchair models.

The general configuration of sensors is shown in Figure 3.4. Lateral ultra-sound sensors (S3-

S6 and S11-S14) are located 22 cm apart from each other and were assembled directly in the sensor

bar. Front and rear ultra-sound sensors (S1, S2, S7, S8, S9, S10, S15 and S16) were assembled

in a a special rounded tip designed to fit in both extremities of the sensor bars, and are headed

with a 45o difference. This configuration allows a safety perimeter that extends from 27cm until

80cm, in which surrounding objects are in the wheelchair field of view. The figure also depicts the

positioning of the laser scanner (L1) in the left sensor bar. Note that Figure 3.4 represents only the

position and field of view of the sensors, and not their detection range.

Figure 3.5 identifies the location of the components of the hardware framework in the Intell-

Wheels prototype. In addition to the ultra-sound transducers, the left sensor bar also supports the

laser scanner (Figure 3.5b) and the plastic container that holds the interface board (Figure 3.5c).

3.5 Simulation

Up to a recent past the use of simulations for simulating IWs (as any robot in general) was quite

restricted due to the lack of general simulators. Usually, the existing simulators were developed

to deal with some quite specific situations and environments. The development of a new tool for

the simulation of IWs is time and resource consuming, and frequently is out of the project’s scope.

However, this reality started changing due to the release of general simulators.

Simulations have a great potential for low cost analysis, since it is able to give researchers

access to cost-prohibitive sensors and robotic platforms. In addition, simulators provide the ability

to compress time, and so, to evaluate the results of time-consuming experiments much faster.

They are pedagogically proven technique for training [187], so they can be used to drill people in

safe environments. They allow testing under repeatable and controllable conditions, simplifying

debugging (e.g. the same scenario can be precisely generated to trigger a known error).

Unlike real testing environments, which may not be accessible, or may only be accessible at

certain times, simulated environments have unlimited availability [188]. For example, experiments

that require special natural illumination (i.e. sun light) may be accessible for just some hours a

day, and experiments requiring special weather conditions (like fog, rain, etc.) may be accessible

just a few times a year. Simulations also provide researchers virtual access to different testing

environments, making these virtual testing very cost effective. Actually, with the right modelling,

the behavior of the robot can be tested in any environment (from the reconstruction of a laboratory

up to urban environments, desserts, catastrophes, lakes, oceans, others planets, etc). Finally, the

extensive use of simulators allows researchers to safely refine their algorithms before testing the

robot behavior in real environments.

The simulator’s involvement in the IW project is even greater as the notion of mixed reality

(MR) is introduced (e.g. real wheelchair agents, virtual wheelchair agents, virtual door agents,
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viewer agents, medical agents). Such types of interactions, between the real and virtual worlds,

create a mixed reality environment. The MR support stretches the IntellWheels simulator’s capa-

bilities beyond merely testing algorithms. Thus, it is possible to evaluate the reaction of a real IW

in a more dynamic scenario - with moving obstacles, complex maps and other intelligent agents

moving around. In other words, a real IW connected to the simulator is capable of interacting with

virtual objects. The perception agent uses the data gathered from the real encoders to compute

the wheelchair’s position and then send it to the simulation server. Once the data is received, the

simulator places the IW virtual body onto its respective position and returns the perception of the

virtual proximity sensor’s perception to the real wheelchair agent. Next, the real wheelchair agent

combines the data from real and virtual proximity sensors, computes the motor power and sends

it to the real wheelchair.

The first version of the IntellWheels simulator was a customization of the Cyber-Mouse simu-

lator [189]. The "Cyber-Mouse" simulator presented several useful characteristics for IW sim-

ulation, such as the simulation of different environments, differential robots with two wheels

and some sensors (e.g. compass and proximity sensors, GPS). In addition to the simulation

server, Cyber-Mouse also contains a 2D simulation viewer specific to the "Cyber-Mouse" compe-

tition [190]. IntellWheels simulation module preserved the Cyber-Mouse conceptual architecture,

but applied significant adjustments to the robot model and to the collision detection polices [191],

as well as in the addition of a 3D visualization module [192, 16].

The first experiments, though, demonstrated that the Cyber-Mouse based simulator lacked

the capacity to perform realistic simulations, which in turn are required for testing the intelligent

wheelchair subsystems and training users. In fact, simulation results just reflect the reality when

the simulation requirements are considered and when the appropriate models are introduced. The

requirements for simulating mobile robots may differ according to the purpose of the simulation.

For testing motion control, a higher level of detail in multi-body may be important. On the other

hand, for testing sensor data processing, a higher fidelity in the sensors measures is desirable. If

the simulation aims to evaluate higher level of abstractions, like global localization, ground truth

data should be provided. If machine vision is used by the robot, a good rendering is required.

Essentially, simulation requirements can be classified into physical fidelity and functional fidelity.

The first concerns with how the simulation looks, sounds and feels. In other words, it is the

ability of the simulator to render high resolution textures, shades, lighting and reflection. The

second concerns with the simulation of most of the forces acting on robots and on its actuators,

including not only but gravity, dragging, accelerations and collisions [193]. Carpin et al. [194]

claim that the simulation of robotic platforms should not consider a robot as an isolated entity,

but as an entity which interact and is affected by the environment where it is situated. With

that in mind, a detailed assessment of six 3D robotic simulators was performed: Unified System

for Automation and Robot Simulation (USARSim) [195], Microsoft Robotics Developer Studio

(RDS) [196], Webots [197], SimTwo [198], V-REP [199] and Gazebo [200]. The results of such

analysis are presented in the Section 3.7.2. Due to its unique combination of features, USARSim

was selected as the basis to the new IntellWheels simulator: IntellSim [21].
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(a) Real Environment. (b) Simulated Environment.

(c) Real Wheelchair. (d) Simulated Wheelchair.

Figure 3.6: IntellSim: the new IntellWheels simulator. Increased realism with the simulation of
textures, lightings, shadows and physics. (a) and (c) depict the real environment and wheelchair,
while (b) and (d) their simulated counterpart.
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As described by Carpin et al. [194], "USARsim is a general-purpose multi-robot simulator that

can be extended to model arbitrary application scenarios". It was designed to create physically ac-

curate simulations of robots for research in fields like the human-robot interaction and multi-robot

coordination. The simulator is built upon a commercial game engine thanks to the architecture

of the Unreal Tournament 3 [201], which separates the game logic and rules from simulation dy-

namics and environmental data. This way the game core code was reused and applied to a more

comprehensive simulation, providing USARsim with high realistic visual rendering and high per-

formance physics simulation. A further advantage relies in the fact that every improvement driven

by the gaming industry translates directly into simulation advantages, which is particularly true

for hyper realistic rendering and physical simulation [202].

The simulator is open source under the GPL licensing, and platform independent, running

under operating systems like Windows, Linux and MacOS. USARSim is highly configurable and

extensible, allowing users to develop new sensors, to model new robots and to create and re-create

virtually any desired environment. As a consequence, USARSim has become quite widespread

within the scientific community, which has released a number of improvements. Simultaneously,

researchers have published several papers with quantitative evaluations that demonstrate a very

close similarity between the real and simulated systems[195].

To create a realistic environment a model of the APPC building, similar to the place where the

patients are used to move around, was built using the Unreal Editor [203]. Several components

in the map were modeled using 3DStudioMax [204] and imported into USARSim. Figure 3.6

presents a picture of the APPC building (Figure 3.6a), and its simulated model (Figure 3.6b). The

virtual wheelchair was modeled using the program 3DStudioMax [205] and imported to the Unreal

Editor as static meshes (*.usx). The model was then added to USARSim by writing appropriate

Unreal Script classes and modifying the USARSim configuration file. Figure 3.6c presents a

picture of the real wheelchair, and Figure 3.6d its simulated counterpart.

3.6 Local Obstacle Avoidance

Intelligent wheelchairs operating in dynamic environments need to sense its neighborhood and

adapt the control signal, in real-time, to avoid collisions and protect the user. In this section a

robust, real-time obstacle avoidance extension of the classic potential field methodology is pro-

posed. The algorithm is specially adapted to share the wheelchair’s control with the user avoiding

risky situations. This method relies on the idea of virtual forces, generated by the user command

(attractive force) and by the objects detected on each ultrasonic sensor (repulsive forces), acting on

the wheelchair. The resultant wheelchair’s behavior is obtained by the sum of the attractive force

and all the repulsive forces at a given position. Experimental results from drive tests in a cluttered

office environment provided statistical evidence that the proposed algorithm is effective to reduce

the number of collisions and still improve the user’s safety perception.

Motivated to answer to numerous mobility problems, many intelligent wheelchair related

projects have been created in the last years [71]. While some initiatives have improved the
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autonomous function of the mobility aid [94, 206], others focused their work in sharing the

wheelchair’s control with the user [207, 102]. Shared control initiatives take advantage of the

user’s intelligence and assist the driver in the navigation process when dangerous situations are

detected, extending and complementing user capabilities. In such a way, techniques as obstacle

avoidance developed in fields of robotics have the potential to improve user’s safety and reduce

the navigation complexity. These methodologies consist basically on shaping the robot’s path to

overcome unexpected obstacles. A number of algorithms were develop to overcome obstacles and

differ basically in the sensorial data used and control strategies. However, not all techniques are

suitable to be implemented in a shared control paradigm. Some of the desired properties of shared

control algorithms are:

• Avoid obstacles in real-time: since wheelchairs operate in dynamic environments, it is not

feasible to implement popular time-consuming global path planners. Instead, such applica-

tion is more suitable to approaches based on fast response like reactive/reflexive controls.

• Low computational cost: low memory and processing consuming algorithms are more likely

to achieve a real-time reflexive behavior in embedded systems.

• Increase user safety and user safety perception: beyond a quantitative reduction in the

number of collisions, shared control initiatives may consider qualitative evaluations of the

wheelchair’s overall behavior. In spite of imposing the control to the wheelchair, the algo-

rithm may adapt the control signal to reduce the discomfort caused in driving tasks.

Furthermore, once intelligent wheelchairs are designed to carry people with disabilities, they

should have the same durability, functionality and ergonomics concern of the standard powered

wheelchairs. It not only constrains the number of sensors, but their type and position on the

wheelchair. Therefore, the shared control algorithm may be robust enough to ensure the user

safety even with non-optimal amount of information.

This section proposes and implements an extension of a classic obstacle avoidance technique

known as potential field. Special attention was given to user autonomy, assisting the wheelchair’s

control just when dangerous situations were detected. The potential field concept was chosen as

base for our implementation given its simplicity [22]. Especially due to the possibility to easily

adapt the algorithm to cover the specific requirements of shared control paradigms and to run it

on the limited computational capability of our prototype’s embedded system. However, our work

differs from the original PF because it does not try to build a world map of the environment.

Instead, our approach is closer to the implementation described by Bicho et al. [167], where each

ultrasonic range reading is treated as a repulsive force.

Once an object is detected by a sensor Si, a virtual repulsive force Fi towards the robot is

computed. The direction of each repulsive force is determined by the direction of λi, from the

object point Oi to the Robot Center Point C, (Figure 3.7). Notice that since sonar sensors return

radial measures of the environment, it is not possible to determine precisely the angular location

of the object. However, it is much more likely that the detected object is closer to the acoustic
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Figure 3.7: Representation of the repulsive forces acting on the wheelchair. F2, F6 and F7 repre-
sent the repulsive forces generated respectively by the objects O2, O6 and O7. Fr represents the
sum of all the three repulsive forces.

axis of the ultrasonic transceiver then in the periphery of the conical field of view [163]. Thus,

the position of obstacle Oi is computed as the measured distance Di under the acoustic axis of the

sensor.

σi = atan2(Oiy,Oix) (3.1)

where (Oix,Oiy) is the relative position of obstacle detected by the sensor Si, and σi is the direction

from the detected object Oi to the wheelchair’s center point C. The magnitude of the repulsive

forces grow exponentially accordingly to the pair (Di,Sp):

|Fi|= α exp(−βDi +ωSp)|Fa| (3.2)

where α , β and ω are positive constants deduced from the desired safety range, |Fa| is the magni-

tude of the attractive force, Di the distance to an obstacle Oi measured by the sensor Si, and Sp the

wheelchair speed. Once all repulsive forces are computed, they are added up to yield a resultant

repulsive force Fr:

Fr =
n

∑
i=0

Fi (3.3)

Next, the virtual attractive force Fa induced by the target is updated. In the wheelchair imple-

mentation the force Fa is directly proportional to the current user input, which can be either the

standard wheelchair’s joystick or a special user interface which is based on the user’s head posi-

tion. Summing both the resultant repulsive force Fr and current attractive force Fa it is possible to

derive the final force Ft that steers the wheelchair, Figure 3.7.
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Figure 3.8: Safety distance range acording to the IW’s speed and distance.

Ft = Fa +Fr (3.4)

In order to keep user autonomy at the utmost, control signals are only adapted in situations

were the user faces an eminent risk of collision. Therefore, repulsive forces start acting just when

a safety range is reached. Due to inertia, the distance needed to completely stop the wheelchair

increases with its speed Sp. Thus, the risk of collision is considered a bi-dimensional variable,

both distance and speed dependent. Such safety range was designed not just to avoid obstacles

in the wheelchair’s neighborhood, but also to avoid oscillations that non-critical far objects could

cause in the control’s behavior. For the experiments, the values of the constants were empirically

tuned according to the dynamics of the wheelchair, and set to α = 0.51, β = 0.271 and ω = 14.8.

Figure 3.8 depicts the relation of Fi and Fa (Equation 3.2) according to the speed of the wheelchair

and the distance to an obstacle.

3.7 Experiments and Results

The goal of this section is to present the description of the experiments performed to validate

three contributions of this thesis regarding the development of intelligent wheelchairs. First, we

present the evaluation of the obstacle avoidance methodology proposed in the Section 3.6. Next,

we assess the features of popular robotic simulators in order to choose the most appropriate one

regarding the IntellWheels requirements. Finally, we evaluate the extent of the visual/ergonomic

modifications comparing the IntellWheels prototype with other intelligent wheelchair prototypes

and with the original powered wheelchair used in the project.

3.7.1 Obstacle Avoidance Experiments

In order to evaluate the efficiency of the proposed obstacle avoidance algorithm, eight volunteers

performed each one a set of four driving tests. Each set was composed of four laps: two laps in a

simulated environment (one lap with and one lap without the assistance of the algorithm) and two

laps in a real environment (one lap with and one lap without the assistance of the shared wheelchair
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Figure 3.9: Representation of the closed circuit were experiments were conducted.

control). All of the eight recruited participants were aged between 26 and 39 years old, and

have spent around 40 minutes running the experiments and answering a post-test questionnaire.

Based on the work proposed by Parikh et al. [90], a well-defined protocol to conduct the test was

designed. The protocol aims to ensure that data were collected accurately and in the same way

across the tests, and will be better explained in the next sub-section.

Participants were instructed about the objective of the task and about the closed circuit they

should drive, Figure 3.9. It was reinforced that their main goal was to drive safely and then to

finish each lap as fast as they could. Time was just mentioned as a secondary objective to prevent

volunteers from navigating too slowly, and was not used on the evaluation process.

Tests in the real environment were run using IntellWheels intelligent wheelchair prototype,

and tests in the simulated environment were run under the IntellWheels Cyber-Mouse based sim-

ulator. During these trials, some conditions faced by handicapped individuals were simulated. To

accomplish that, all participants were asked not to drive the wheelchair using its standard hand

driven joystick. Instead, volunteers were requested to perform all four laps using IntellWheels

head gestures input.

The experiment protocol has been defined to standardize the results of both tests, and consists

basically of seven steps:

• Step 1 Volunteers were instructed about the test procedure and about their objectives during

the four drive tests.

• Step 2 It was given to each participant a 10 minutes driving trial in a simulated environment.

Thus, the user could experiment the wheelchair and make the necessary adjustments to the

special human-machine interface.

• Step 3 Once prepared, the participant was asked to drive the wheelchair (1 lap) through the

circuit in the simulated environment with the manual control paradigm.

• Step 4 After the first test, it was asked to the volunteer to drive the wheelchair (1 lap) through

the same circuit in the simulated environment, but with the assistance of the shared control.

• Step 5 Accomplished both tests in the simulator, the user were asked to drive the wheelchair

(1 lap) in the real environment with the manual control.
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• Step 6 In the last test the user had to drive the wheelchair (1 lap) in the real environment

with the shared control paradigm.

• Step 7 To evaluate the shared control paradigm, the user safety perception and to conclude

the set of experiments, a pot-task questionnaire was applied.

From the set of experiments described above, both quantitative and qualitative data have been

generated. All analysis were performed within subjects, which allowed us to estimate if provid-

ing assistance actually helped each individual, rather than testing the performance of individuals

against each other. Therefore, experimental data were subjected to a nonparametric test for paired

samples (Wilcoxon Signed Rank 1-tailed test) [208], which made possible to reach some conclu-

sions with a confidence level of 95% (p<0.05).

Based on the number of collisions of each trial, the shared algorithm performance could be

evaluated in the simulated (Figure 3.10) and real environments (Figure 3.11). In the real envi-

ronment, the statistical analysis indicate a significant reduction in the number of collisions with

the shared control paradigm (T = 0.00, p = 0.0135). The same conclusion can be drawn for the

shared control in the simulated environment (T = 0.00, p = 0.009).

Another interesting aspect to consider is the evaluation of the algorithm from the user’s per-

spective. Related projects concluded that, despite the reduction in the number of collisions pro-

vided by their shared control algorithms users did not felt safer indeed, and gave preference to the

standard driving paradigm without any assistance.

In order to measure the user perception, we invited the volunteers to specify their opinion

regarding twelve statements (six for each control paradigm) of a questionnaire. The respondent

level of agreement with statement was measured through a typical five-point Likert item (1 =

Strongly disagree, 2 = Disagree, 3 = Neither agree nor disagree, 4 = Agree, 5 = Strongly agree).

1. I feel comfortable when driving the wheelchair.

2. I feel that I have the control of the wheelchair behavior.

3. It is easy to drive the wheelchair in cluttered spaces.

4. Driving the wheelchair requires little attention.

5. The wheelchair has the same behavior either in the simulated and the real environments.

6. I believe that the shared control helped me during the navigation task.

In our analysis, the user safety perception was treated as an indirect variable measured through

the sum of the points of the statements 1, 2, 3 and 4. Results are depicted in Figure 3.12). The

difference between the user safety perception with and without the shared control paradigm was

significantly greater than zero (T = 3.0, p = 0.027), providing evidence that the shared control is

effective to improve user’s safety perception.
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Figure 3.10: Number of collisions per volunteer in the simulated environment.

N
º 

co
lli

si
on

s 
in

 th
e 

re
al

 e
nv

iro
nm

en
t

Volunteer

1 2 4 5 8

2

0

6

8

4

3 6 7

Manual Control
Shared Control

Figure 3.11: Number of collisions per volunteer in the real environment.
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Figure 3.12: User’s perception of safety with and without the assistance of the shared control.
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Another inference can be drawn regarding to the behavior of the wheelchair in the simulator.

Through the fifth statement, we tried to measure how close to the reality the simulated behavior

of the wheelchair is. A threshold value of 3 was used to compare results, Figure 3.13. Since in

the Likert item a value of 3 means that respondents neither agree nor disagree with the statement,

a value greater than 3 means that simulated wheelchair reacted just like the real one in the user’s

perspective. Through the Wilcoxon signed rank test it was not possible to state with a confidence

level of 95% that the wheelchair presented the same behavior in neither the manual (p = 0.0655)

and shared control (p = 0.051) paradigms.

Finally, one last result of the questionnaire concerns with the user’s perception of the assis-

tance provided by the wheelchair. In this case it was evaluated through the statement 6 (only

present in the shared control section of the questionnaire), comparing it with a threshold value of

3 (Figure 3.14). Similar to what was mentioned before, a value greater than 3 means that the user

felt assisted by the algorithm. The statistical analysis provided evidence that volunteers indeed felt

that the shared control paradigm helped them to drive the wheelchair (T = 0.0, p = 0.01).

3.7.2 Assessment of Robotic Simulators

Currently, an extensive number of general simulators are available for robotics research [193].

However, specificities of the project had to be taken into account when choosing a new tool to

simulate the IntellWheels prototype. Therefore, in order select the robotic simulator that better fits

the requirements of the IntellWheels project, we evaluated four popular robotic simulators using a

set of seven criteria:

• Support to import 3D models – we define this criteria as the ability of a simulator to import

three-dimensional models of objects from typical Computer Aided Design (CAD) programs

(such as Solidworks, Autocad, Pro-engineer, etc). We believe that this ability can facilitate

the development of a more realistic model, thus improving the simulation. The evaluation of

this criterion receives "yes" when the simulator supports importing objects and "no" when

it does not.

• Programming language – in this criterion we identify which programming languages are

supported by the simulator to create the program that controls the robot. A wide support

in the programming language criteria is desired. In addition, we look specifically for a

simulator that supports object pascal, once the IntellWheels platform is currently under de-

velopment in that language. The evaluation of this criterion receives the list of the supported

languages.

• External agent support – concerns the ability to run the agent(s) that control the robot from

outside of the simulator. This characteristic is desired because we want to be able to dis-

tribute the agents that control an IntellWheels prototype and the agents that provide addi-

tional services in more than one computer. This way, it is possible to increase the robustness

of the system, since an agent can assume the tasks of other agents that for any reason are
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not answering. The evaluation of this criterion receives "yes" when the simulator supports

external agents and "no" whenever it does not.

• Multi-thread support – is the ability of the simulator to run more than one simulation task

simultaneously. This ability is important to improve the simulation efficiency. The evalua-

tion of this criterion receives "yes" when the simulator supports multi-thread and "no" when

it does not support.

• Physics Engine - concerns the identification of the libraries used for computing physics

simulation. The main task of all physics engines is to solve the motion of the system given

the forces acting on it. Therefore, they play a very important role in the simulation of

dynamic systems because they are directly responsible for its functional fidelity. On the

other hand, physics engines have a indirect responsibility also in the physical fidelity of the

simulation. Particularly, the way that a simulation looks is closely dependent on the type

of features the physic engine is able to simulate. For example, simulations with deformable

objects demonstrate a greater realism over those which consider objects as rigid bodies, the

simulation of fluids, like fog, may be important for machine vision and for video feedback,

and so on. The evaluation of this criterion receives the name of the library used in each

simulator.

• License – corresponds to the monetary cost for the developer and for the end user. The

evaluation of this criterion can receive the value "Open Source" for those simulators that are

released with their source code, "free" for simulators that are available without any monetary

compensation and without their source code, and "commercial" for those simulators that

require monetary compensation.

• Sensors – in this last criterion we identify which sensors are released with the simulators

and if the simulator allows developers to create new sensors.

Each simulator was assessed through its user manual or equivalent documentation. The result

of such evaluation and a summary of the sensors available in each simulator is presented in the

Table 3.2. With the exception of Gazebo and SimTwo, all simulators evaluated can import 3D

models from typical CAD tools. Regarding the programming language, both USARSim, SimTwo,

V-REP and Gazebo can cope with a wider support. These simulators rely on a client/server ar-

chitecture with communication through TCP/UDP protocol, which also provides the support to

external agents. Regarding multi-thread support, only USARSim, Microsoft Robotics Studio and

V-REP are able to benefit from the simultaneous task processing.

Despite several libraries for physics computation available (PhysX, Bullet, JigLib, Newton,

ODE, Tokamak, True Axis) [193], PhysX and ODE are dominant in the simulators under analysis.

ODE (Open Dynamics Engine) is an open-source library that is designed for simulations of rigid

bodies and articulated bodies dynamics. For this reason, this library is not able to support the

simulation of deformable objects, particles and fluids. ODE is platform independent with an easy
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to use C/C++ API. The kind of applications ODE was developed for also explains some of its

characteristics, since ODE was developed to prioritize computational speed over physics accuracy.

On the other hand, PhysX is a proprietary solution widely used in Epic games. It provides support

to the main platforms for games and graphics (such as PS3, XBOX, PC, etc.). Its main advantage

consists in supporting not only rigid and articulated bodies, but also fluids (such as water, blood,

smoke, gas, etc.) and particles (such as sparks, scattered glass fragments, dust, etc.). PhysX has a

faster physics integration algorithm, and provides a more stable simulation when dealing with the

collision of several objects [209]. In addition to the physics library, nVidia has also developed a

special hardware device: the Physics Processing Unit (PPU).

With respect to the license, Gazebo and USARSim are open source simulators. At this point,

it may be noticed that USARSim is open source simulator, but its current version relies on a pro-

prietary engine that is free for noncommercial and educational use. In the RDS 2008 R3 version,

Microsoft has combined the previous Express, Standard and Academic licenses into one license

free of charge. SimTwo is free and V-REP only recently adopted a license model which is free for

noncommercial and educational use. Webots is the only simulator evaluated that has only a com-

mercial license, with versions that costs from 250.00efor up to 2600.00e. Finally, the analyses of

the sensors criteria revealed that both SimTwo and V-REP does not provide simulation to all the

sensors used in IntellWheels hardware framework. Another severe limitation was observed in the

RDS, SimTwo and V-REP, which does not allow researchers to develop new sensors.

3.7.3 Assessment of the Visual Appearance of the IntellWheels Prototype

The low visual/ergonomic impact of the IntellWheels prototype is another contribution in the de-

velopment of intelligent wheelchairs. In order to evaluate the extent of such changes we conducted

a public opinion poll about the visual appearance of several intelligent wheelchair prototypes. In

the survey, respondents were invited to express their level of agreement to fourteen statements

through a typical five-level Likert scale (1 = Strongly disagree, 2 = Disagree, 3 = Neither agree

nor disagree, 4 = Agree, 5 = Strongly agree).

The assessment was answered by 128 individuals, of which 43.8% males and 56.3% females,

with a mean of age of 24.2 years old (Std = 7.26). Respondents were selected by convenience,

composed essentially by Master and PhD. students from the Faculty of Engineering of the univer-

sity of Porto and from the School of Allied Health Sciences of the Polytechnic Institute of Oporto.

For this reason, subjects presented a high education level, with 32% having high school diplomas,

39% Bachelor degrees, 25% Master degrees and 3.1% Doctors degrees. The majority of the sam-

ple, 54.7%, is composed by subjects with no direct relation with physically disabled people, while

31.3% were health care professionals, 12.5% were relatives or friends of wheelchairs users and

1.6% were users of manual wheelchairs. The lower proportion of people with disabilities may not

affect the validity of this study since the object under analysis, the public opinion about the visual

appearance of intelligent wheelchair prototypes, is not determined by the condition of the subjects.

The questionnaire was composed of two parts. The goal of the first part was to evaluate the

visual appearance of IntellWheels comparatively to other intelligent wheelchair prototypes. Based
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D) University of Texas
Wheelchair

E) IntellWheels
Prototype

F) MIT
Prototype

B) EISLAB
Prototype

H) Sharioto
Prototype

A) SmartChair
Prototype

G) Robochair
Prototype

C) University of Shiga 
Prototype

I) SENA
Prototype

J) FRIEND II
Prototype

Figure 3.15: Prototypes of ten intelligent wheelchair projects: (A) SmartChair, (B) EISLAB,
(C) University of Shiga, (D) University of Texas, (E) IntellWheels, (F) MIT, (G) Robochair, (H)
Sharioto, (I) SENA, (J) FRIEND II.

on Figure 3.15, respondents were asked to express their level of agreement with the following

statement:

The addition of sensors and other hardware devices had visual/ergonomic impact on the wheelchair

(e.g. changed the normal appearance/usage of the Wheelchair).

Results of the first part of the questionnaire are depicted in the Figure 3.16. An analysis within

subject performed with the Wilcoxon signed rank test (Table 3.3) provides statistical evidence that,

among the ten projects, IntellWheels presented the lowest change in the normal appearance of the

wheelchair.

Table 3.3: Wilcoxon signed rank test: comparison between the visual impact of IntellWhells with
other intelligent wheelchair prototypes.

- Ranks + Ranks Ties Total Z p
IntellWhells - SmartChair 76 20 32 128 -5.622 <0.001
IntellWhells - Robochair 41 21 66 128 -2.403 0.008
IntellWhells - Shiga 48 24 56 128 -2.756 0.003
IntellWhells - Texas 69 15 44 128 -5.547 <0.001
IntellWhells - MIT 39 26 63 128 -2.306 0.010
IntellWhells - EISLAB 58 14 56 128 -4.566 <0.001
IntellWhells - Sharioto 34 22 72 128 -2.446 0.007
IntellWhells - SENA 73 15 40 128 -5.613 <0.001
IntellWhells - FRIENDII 80 15 33 128 -6.218 <0.001
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Figure 3.16: Responses indicating the level of agreement with the statement: The addition of
sensors and other hardware devices had visual/ergonomic impact on the wheelchair (e.g. changed
the normal appearance/usage of the Wheelchair).

The second part presented to the respondents two images: one image of the IntellWheels

prototype and one image of the original powered wheelchair used in the project. The goal was to

assess the visual impact of the modifications performed in the wheelchair as a whole, as well as the

visual changes introduced by specific hardware devices (display, sensor bars and other hardware

devices). Based on the Figure 3.17, respondents were requested to express their level of agreement

with four statements:

In comparison with the original powered wheelchair, global visual/ changes of the IntellWheels

prototype are small.

In comparison with the original powered wheelchair, visual changes introduced by the display

are small.

In comparison with the original powered wheelchair, visual changes introduced by the sensor

bars are small.

In comparison with the original powered wheelchair, visual changes introduced by the computer

and other hardware are small.
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A) Original Powered Wheelchair B) IntellWheels Prototype

B.I) Display 

B.II) Sensor bar

B.III) Other hardware

B.III) Computer 

Figure 3.17: Original powered wheelchair (A) and the IntellWheels prototype (B). In detail, the
(B.I) display, (B.II) sensor bars and (B.III) computer and other hardware devices.

Figure 3.18 depicts the responses of the second part of the questionnaire. An analysis within

subject was performed with the Wilcoxon signed rank test (Table 3.4) by comparing the opinions

regarding the four statements to the neutral hypothesis (3 = Neither agree nor disagree). At a level

of significance of 0.05, there exists enough evidence to conclude that both the display, sensor bars

and other hardware devices had only a small visual impact. Further statistical results indicate that

the IntellWheels prototype was able to keep the overall aspect of the original wheelchair.

Table 3.4: Wilcoxon test: visual impact in the IntellWhells prototype. Opinions regarding four
items were compared to the neutral hypothesis (3 = Neither agree nor disagree) to verify if there
is statistical support to the claim that the modifications performed in the wheelchair are small.

- Ranks + Ranks Ties Total Z p
Hypothesis - Global 22 86 20 128 -6.036 <0.001
Hypothesis - Display 23 86 19 128 -6.319 <0.001
Hypothesis - Sensor bar 31 72 25 128 -4.217 <0.001
Hypothesis - Other hardware 19 90 19 128 -7.051 <0.001

Despite none of the hardware devices analysed presented a significant visual modification in

the wheelchair, an interesting outcome of the second part of the questionnaire is the ordering of

the hardware devices by its visual impact level. Therefore, next designs can take such information

into account an collaborate on reducing the rejection to assistive robotics. In order to sort the

hardware devices, it was performed a within subject analysis with the Wilcoxon signed rank test,

comparing in pairs the level of agreement given to each one of the three devices. From the results

summarized in the Table 3.5, it was found evidence that highest impact was provided by the sensor

bars, followed respectively by the display and by the other hardware.
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Table 3.5: Wilcoxon test: comparison of the visual changes introduced by (I) display, (II) sensor
bars and (III) computer and other hardware devices.

- Ranks + Ranks Ties Total Z p
Sensor bar - Display 40 25 63 128 -1.948 0.025
Other hardware - Display 17 36 75 128 -2.532 0.006
Other hardware - Sensor bar 12 46 70 128 -4.263 <0.001
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Disagree
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5 - Strongly 
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Other Hardware Changes

Figure 3.18: Responses indicating the level of agreement with the statements: In comparison with
the original powered wheelchair... global visual changes of the IntellWheels prototype are small;
visual changes introduced by the display are small; visual changes introduced by the sensor bars
are small; visual changes introduced by the PC and other hardware are small.

3.8 Conclusions

In this chapter, we presented a general overview of the project IntellWheels, and three contribu-

tions of this thesis to the development of intelligent wheelchairs. IntellWheels was defined as a

generic platform for research and development of intelligent wheelchairs. Its modular architecture

enables an easy integration of distinct sensors, actuators, user input devices, navigation methodolo-

gies, intelligent planning techniques and cooperation methodologies. The communication module

demonstrated to be a mean to enable fault-tolerant communications in open transmission sys-

tems, and to work as a facilitator for entity collaboration. The generic hardware framework of the

platform is designed to facilitate the conversion of ordinary powered wheelchairs into intelligent

wheelchairs with minor changes. In addition, due to the use of low cost off-the-shelf devices, it

presented a cost effective solution for assisting severely impaired individuals. The estimated cost
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of the hardware framework was designed not to exceed the cost of ordinary powered wheelchairs,

available in the market with a starting prices around 2.000,00e. The multimodal interface ex-

tended the regular human-wheelchair interaction by allowing the user to create its own association

between combinations of multiple (and/or heterogeneous) inputs with one wheelchair action.

The proposed obstacle avoidance methodology relies on the dynamic approach of the classic

field of forces concept. This work extends and complements the potential field methodologies from

a shared control perspective. To reduce the computational cost and run the algorithm in real-time,

each ultrasonic range reading is treated as a repulsive force. Thus, it is not necessary to build a

map of the environment and compute thousands of parameters. Furthermore, as localization is not

required, dead reckoning errors are not introduced when computing the distance to obstacles. The

experimental results in both simulated and real environments indicate that the proposed method-

ology is effective in reducing the number of collisions. In addition, the algorithm demonstrated

to be able to increase the user perception of safety and their feeling of assistance. An interesting

observation concerns to the number of collisions in the simulated environment, which is in general

much greater than in the real environment. A possible explanation for this might be related to the

fact that the collisions in the simulated environment does not represent a life-threatening situation.

Therefore, there is a tendency to relax and to reduce the attention to the circuit. Another possible

cause is related to lack of realism provided by the Cyber-mouse based simulator. Volunteers re-

ported that the 3D environment of the simulator could not provide an accurate perception of depth

and distance to objects, causing collisions in the cluttered test circuit.

Such results showed the importance of increasing the simulation realism. The first step towards

a new and more realistic version of the simulator was the assessment of the robotics simulators

available. For this purpose, six general robotic simulators were evaluated based on a set of seven

criteria. Due to specific project requirements and to its unique combination of features, USARSim

was selected to simulate the IntellWheels prototypes. We have considered the lack of support for

Object Pascal of the RDS, V-REP and Webots, the lack of sensors of SimTwo and V-REP, the

limitation in the development of new sensors of RDS, SimTwo and V-REP, the cost of Webots,

and the lack of support to multi-task processing and to import 3D models as the main problems of

the other simulators. USARSim, on the other hand, presented a superior physics engine, validation

of several sensors and actuators and is currently one of the most used robotics simulator within the

scientific community.

Another contribution of this thesis is the mitigation of the visual and ergonomic impacts caused

by the sensorial and processing capabilities. Figure 3.5 demonstrates that despite the assemblage

of the several sensors that composes the hardware framework, the accessibility to the wheelchair

was not compromised. The assessment of the IntellWheels visual appearance indicated that not

only the prototype presented the lowest visual impact between ten other intelligent wheelchair

prototypes, but also that its overall aspect is similar to the original powered wheelchair. A more

detailed analysis of three groups of hardware devices added to the wheelchair suggested that none

of than caused a significant visual impact. Such result validate the design of the IntellWheels

prototype and contribute to increase the acceptance of assistive robotics by the general population.
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Finally, despite the several concepts proposed through the IntellWheels platform, not all mod-

ules achieved the robustness required to assist in an autonomous fashion physically disabled and

elderly people. An example is the IntellWheels dead-reckoning based localization. Although,

Borenstein and Feng [6] proposed a methodology to compensate systematic errors in odometry,

they assume that the dimension of the wheels does not vary in time. In the first IntellWheels proto-

type [15] we proposed two solutions to reduce dead-reckoning errors. The error accumulated over

time is reset whenever the wheelchair detects an artificial landmarks. Therefore, the strategic level

of the control module forces the wheelchair to re-plan its path to pass over the nearest artificial

landmark whenever the localization uncertainty overcomes a pre-defined threshold. The second

was the couple the encoders in passive wheels (rather than on the motor shaft), reducing the errors

caused by wheel slippage. These additional wheels were mounted on levers located internally to

the wheelchair and parallel to the rear wheels. The contact of the auxiliary wheels with the floor

was granted by gravity and also by compression springs [19, 15]. Another advantage of such ap-

proach was that the errors derived from variations in the wheel diameter (in the wheelchair case

due to the use of rubber tires filled with compressed air) can be avoided since solid undeformable

wheels can be used. The problem of such an approach is that the mechanical assemblage of the

mechanism is not trivial and has to be designed specifically to each model of wheelchair. An addi-

tional limitation of such approach is that it is not suited to estimate localization in rush and uneven

grounds, like those usually found in outdoor environments.

In an attempt to match IntellWheels flexibility requirements, the latest prototypes assembled

the encoders directly in the motor shaft. This solution, however, lacked to provide robust and

reliable odometry estimations. Vision methodologies, on the other hand, present themselves as an

interesting alternative due to its independence from wheel-terrain interactions. Therefore we pro-

pose the use of feature based visual odometry as means to provide localization to the wheelchair.

Next chapter presents the proposed methodologies to increase robustness in the detection of image

features.



Chapter 4

Photometric Invariant Feature
Detection

Image features are the main primitives for several visual tasks. Therefore

the overall algorithm will often only be as good as its feature detector.

However, most of the original detectors are not able to cope with large

photometric variations, and the extensions that should improve detection

eventually increase the computational cost and introduce more noise to the

system. In this Chapter, we present two approaches that extend the original

SURF algorithm increasing its invariance to illumination changes. While

some authors use color space mapping to achieve invariance, our first ap-

proach uses local normalization and the second approach uses local space

average color descriptor to detect invariant features. A theoretical analysis

demonstrate the effects that distinct photometric variations have on the re-

sponse of local image features detected with the Harris corners, SIFT and

SURF algorithms. Experimental results demonstrate the effectiveness of

the proposed approaches in several illumination conditions including the

presence of two or more distinct light sources, variations in color, offset

and scale.

4.1 Introduction

As previously discussed in the Background Chapter (Section 2.8), feature points are pixels that

differ from its local neighborhood (such as T-junctions, corners and symmetry points) and are

likely to be found in other images of the same object. Since features are used as main primi-

tives for several vision-based localization algorithms, the overall algorithm will be only as good

as its feature detector. For this reason, it is extremely important that the extracted features are

87
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robust to noise and invariant with regard to geometric (such as changes in scale, translation, rota-

tion, affine/projective transformation) and photometric variations (illumination direction, intensity,

color and highlights). According to Lemaire [210], the only solution to guarantee bounded errors

on the position estimates of vision-based localization methodologies is to rely on stable environ-

ment features.

A common alternative to deal with the presence of outliers in the features extracted is the

use of iterative data fitting algorithms, like RANSAC (Section 2.7). However, depending on the

characteristics of the data, RANSAC can become computationally expensive, since the number of

iterations N is exponential in the number of data points required to estimate the model. There-

fore, there is a high interest in finding the minimal parameterization of the model. The most

general motion model required 8 point correspondences [211]. Using the 6-point algorithm [212]

would decrease the number of necessary iterations and therefore speed up the motion estimation

algorithm. For unconstrained motion of a calibrated camera there would be necessary 5 point cor-

respondences [213, 214]. In the case of planar motion, the motion model complexity is reduced

and the parameters estimated with 2 point correspondences [215]. Even more restrictive motion

models can be chosen, allowing a parameterization with only 1 feature correspondence [216, 217].

Computational savings of these restrictive models can be easily derived. For example, with the

inlier ratio ω = 0.5 and a probability p = 0.99, the number of random hypothesis can be reduced

from 146 (s = 5, no prior information used) to only 7 (s = 1, using prior information). Table 4.1

shows the number of RANSAC iterations needed for motion estimation algorithms with different

number of minimal data points s.

Table 4.1: RANSAC: relationship between the minimum set of points and the minimum number of
iterations necessary to guarantee that at least one of them is mismatch-free (p= 0.99 and ω = 0.5).

Minimum set of points 8 6 5 3 2 1
No of iterations 1177 293 146 35 16 7

The drawback of such approaches is that they assume certain motion constraints, or required

partially known camera calibration parameters. Another alternative to reduce the number of

RANSAC iterations consist on increasing the inlier ratio. As an example, with a probability

p = 0.99, the number of random hypothesis of a general motion model algorithm can be reduced

from 70188 to only 78 by increasing the rate of inliers from 30% to 70%. Table 4.2 shows the

number of RANSAC iterations N needed for 8-point motion estimation algorithms according to

the expected rate of inliers. The reader can note that by increasing the rate of inliers the required

number of iterations can also become extremely low.

Table 4.2: RANSAC: relationship between the inlier ratio and the minimum number of iterations
necessary to guarantee that at least one of them is mismatch-free (p = 0.99 and s = 8).

Inlier ratio % 90 80 70 60 50 40 30 20 10
No of iterations 9 26 78 272 1177 7025 70188 1798893 460517014
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In this chapter, we propose two methodologies to increase the robustness in feature detec-

tion, and thus the number of inliers extracted from each image scene. We demonstrate that the

two detectors extend the original SURF algorithm by providing invariance to large changes in

illumination. We characterize the performance of the proposed extensions on a large dataset of

controlled images. The robustness of the detectors is validated through real experiments using two

datasets containing real world image.

The outline of the chapter is the following. Section 4.2 describes relevant related works in

the areas of color image feature detectors and color constancy algorithms. Section 4.3 presents

a theoretical derivation of the effects of illumination changes in the three most common feature

detectors. Section 4.4 lays out our procedure to extract robust image features through a local

normalization approach. In Section 4.5 we address the problem of large illumination variations

proposing a methodology that combines SURF with a color constancy methodology. Section 4.6

presents a detailed description of the image datasets, the metrics used to perform the evaluation

and the results comparing the repeatability of SURF with the two proposed extensions. Finally,

the summary and conclusions of this chapter are presented in Section 4.7.

4.2 Literature Review

Color information can be used in image processing to simplify the identification and extraction

of objects from a scene. color images carry more information than gray level images, and thus

provide a broader class of discrimination between material boundaries [57]. In addition, color in-

formation enables one to distinguish between true color variation and photometric distortions [58].

Thus, when colored images are represented only through their intensity value, a very important

source of information is lost [48].

4.2.1 Color Feature Detector and Descriptors

Originally, most of the feature detectors and descriptors were designed to cope only with the pixel

intensities, discarding the three layers of information provided by RGB images. Later, in order

to take advantage of all the information that RGB cameras are able to provide, some researchers

proposed extensions for the original algorithms.

In [218], Ancuti and Bekaert proposed an extension to the SIFT descriptor (SIFT-CCH) that

combines the SIFT approach with the color co-occurrence histograms (CCH) computed from the

Nrgb color space. Their algorithm performs the same as SIFT in the detection step, but intro-

duces one dimension to the descriptor. Thus, features are described by a two element vector that

combines the SIFT and the CCH descriptor vectors. The main problem of such an approach is

the increase in the computational effort during the feature matching due to the extra 128 elements

added to the descriptor vector. The color-SURF proposed by Fan et al. [219] was maybe the first

approach suggesting the use of colors in SURF descriptors. Through a methodology similar to

the SIFT-CCH, the authors propose the addition of a new dimension to the descriptor vector. This

extra information corresponds to the color histogram computed from the YUV color space, and
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adds a 64-element vector for each feature descriptor. For this reason, just like in the SIFT-CCH,

the extra elements in the descriptor vector increase the computational effort necessary during the

matching step.

In [48], Abdel-Hakim and Farag use the invariant property H (related to hue) of the Gaussian

color model [57] as working space. Thus, instead of using gray gradients to track SIFT features,

they use the gradients of the color invariant to detect and describe features. Although the authors

used the H invariant instead of the C invariant, the approach is called CSIFT in a reference to the

introduction of color in the SIFT operator. In [58], Burghouts and Geusebroek also use invariants

derived from the Gaussian color model [57] to reduce the photometric effects in SIFT descriptions.

They compare the individual performance of four invariants with the original SIFT approach, with

the CSIFT approach [48] and with the HSV-SIFT approach [220]. Their evaluation suggests that

the C-invariant, which can be intuitively seen as the normalized opponent color space, outperforms

the original SIFT description and all the other approaches. In reference to the results of the C-

invariant, the combination of this invariant with the SIFT operator is called C-SIFT.

Bosch et al. [220], on the other hand, take advantage of a Harris operator in order to detect

stable features. Each feature is than characterized by computing SIFT descriptors for each compo-

nent of the HSV color space (128 for each channel), which gives a total of 3 x 128-element vector

for each feature. The main problem to such approach is to add the value component to the feature

description. Once this component is the lightness by definition, it does not provide the desired pho-

tometric invariance. Thus, the complete descriptor has no invariance properties. Sande et al. [39]

presents an evaluation of the different approaches that attempt to provide photometric invariance

to SIFT like descriptors.

In addition to the methodologies previously proposed in the literature (i.e. HSV-SIFT, Hue-

SIFT, C-SIFT), the authors compare the performance of new strategies like the rgSIFT, Oppo-

nentSIFT and RGB-SIFT. Tests were performed in three data sets of different visual categories

under varying illumination conditions, like light intensity change, intensity shift, color change,

arrangement change, viewpoint change and change in the quality of the image compression. The

conclusion suggests that the performance of the descriptors vary according to the analyzed dataset,

but that in general the OpponentSIFT and C-SIFT strategies presents the best results. Table 4.3

summarizes the extensions of local feature detection algorithms that somehow consider color in-

formation.

Table 4.3: Summary of the main characteristic of the related works.

Related work color space Detector Descriptor Dimension
SIFT-CCH [218] Grayscale/ nRGB SIFT SIFT 2 x 128

Color-SURF [219]] Grayscale/YUV SURF SURF 2 x 64
CSIFT [48] Gaussian SIFT SIFT 1 x 128

HSV-SIFT [220] HSV Harris SIFT 3 x 128
C-SIFT [58] Gaussian Harris-affine SIFT 1 x 128

OpponentSIFT [39] Opponent SIFT SIFT 2 x 128
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4.2.2 Color Constancy

The first Section of Background Theory Chapter (Section 2.1) presented to the reader the theory of

image formation by modeling images through the Lambertian Reflectance Model, Equation (2.3).

As discussed, assuming that the objects exhibits Lambertian reflectance, the image RGB values

are directly proportional to the light source E(λ ,Xob j). Consequently, the measured color values

are significantly influenced by the color of the scene illuminant. In other words, the same object,

taken by the same camera but under different illumination, may vary in its measured color values.

This color variation may introduce undesirable effects and negatively affect the performance

of computer vision methods. For example, shading, shadows, specularities, and interreflections,

as well as changes due to local variation in the intensity or color of the illumination all make it

more difficult to achieve basic visual tasks such as image retrieval, image classification, image

segmentation, object recognition, tracking and surveillance [221, 222, 223]. For this reason, one

of the most fundamental tasks of visual systems is to distinguish the changes due to underlying

imaged surfaces from those changes due to the effects of the scene illumination.

The ability to perceive color as constant under changing conditions of illumination is known

as color constancy, and is a natural ability of human observers. It was demonstrated that color

constant cells have been found inside the visual area V4 of the human extrastriate visual cor-

tex [224, 225]. These cells seem to respond to the reflectance of an object irrespective of the

wavelength composition of the light it reflected [226]. Although the mechanism used by the brain

to achieve color constancy is not yet well understood, the brain somehow does arrive at a descriptor

which is independent of the illuminant [227].

The problem of computing a color constant descriptor based only on data measured by the reti-

nal receptors is actually underdetermined, as both the illuminant spectrum distribution E(λ ,Xob j)

and the camera sensitivity pk(λ ) are unknown. Therefore, one need to impose some assumptions

regarding the imaging conditions. The most simple and general approaches to color constancy (i.e.

White Patch and the Gray World hypothesis) make use of a single statistic of the scene to estimate

the illuminant, which is assumed to be uniform in the region of interest. Approaches like Gamut

Mapping, on the other hand, make use of assumptions of the surface reflectance properties of the

objects [222].

Gamut mapping is a color constant algorithm introduced by Forsyth [37] in the early 1990’s,

and later extended in several works [228, 229, 230, 231, 232, 233]. The concept of gamut mapping

is based on the observation that, in real world images, only a limited number of colors can be

observed under a given illuminant. Therefore, any deviation from this set of colors is related to

variations in the color of the light source. This method can also be referred to as a constraint

based approach, since color constancy is achieved by imposing constraints in the set of possible

transformations that maps the image under the unknown illuminant to the image under the known,

canonical, illuminant [234].

In general, gamut mapping algorithms consists of two phases. The first is a learning phase

where the algorithm estimates the set of all possible camera responses (pixel RGB values) by ob-
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serving a wide number of images under a known, reference, illuminant (canonical illuminant).

Such set of all possible colors under the canonical illuminant is referred to as canonical gamut,

and can be represented through a convex hull in RGB space. The second is a testing phase, re-

sponsible to estimate the illuminant of an image under an unknown light source. In this phase

the algorithm takes an input image under an unknown light source and estimate its gamut, which

colors also form convex set. Then, using the Diagonal model (Equation 2.24), it determines the

set of all feasible transformations that, when applied to the gamut of the input image, result in

the canonical gamut. Under the assumption of the Diagonal model, it should exist a unique map-

ping that converts the gamut of the unknown light source to the canonical gamut. However, since

the gamut of the unknown light source is estimated by using the gamut of only one input image,

several consistent mappings can be obtained in practice. The transformation resulting in the most

colorful scene (diagonal matrix with largest trace) is then chosen between the set of possible trans-

formations [37]. In addition to the original heuristic, Gijsenij [234] reminds that Barnard [235]

presents other alternatives, like the average of the feasible set and a weighted average.

The algorithm described above corresponds to the original work presented by Forsyth in [228],

and is known as "coefficient-rule", or just CRULE. The Color in Perspective algorithm (CiP)[228]

demonstrates not only that the gamut mapping algorithm can be computed in the chromaticity

space (R/B,G/B), but also that the diagonal maps can be further constrained to correspond to the

expected illuminants. The Gamut Constrained Illumination Estimation (GCIE) [233] demonstrates

that the gamut mapping algorithm is improved by considering only transformations which corre-

spond to existing illuminants. In [232] the Cubical Gamut Mapping (CGM) propose a simpler

version of the gamut mapping, representing the gamut of image chromaticities as a cube charac-

terized by the image’s maximum and minimum RGB chromaticities, rather than the original more

complicated convex hull. In [231] Gijsenij et al. discusses that since gamut based algorithms use

only the pixel values to estimate the illuminant, additional information present in higher-order

structures is ignored. Thus, they extend the gamut mapping to incorporate image derivatives,

which has the advantage to be invariant to disturbing effects such as saturated colors and diffuse

light.

White Patch is the hypothesis of several algorithms derived from Land’s Retinex theory [236].

Algorithms based on the White Patch are inspired by the eye biological mechanisms to adapt

itself to poor illumination conditions. In some conditions, the human visual system normalizes its

channel values, maximizing towards an hypothetical white reference area.

It supports a simple and fast color constancy algorithm known as max-RGB algorithm [234],

also referred in the literature as scale by max algorithm (SBM) [237]. This algorithm estimates the

color of the light source based on the observation that a surface with perfect reflectance properties

reflects the full range of incident light. Thus, assuming that a White Patch presents these perfect

reflectance properties, it is possible the estimate the scene illuminant by measuring the maximum

of the responses in the RGB channels [223]. In practice, the assumption of perfect reflectance is

alleviated by considering the color channels separately. Since the maxima of the separate channels

is not required to be on the same location, it can also correctly estimate the illuminant when the
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maximum reflectance is equal for the three channels.

max f (x) = (maxR(x),maxG(x),maxB(x)) (4.1)

Thus, the color invariant max-RGB descriptor can be obtained through

O(x) =
f (x)

max f (x)
(4.2)

The traditional White Patch models the eye adaptation mechanism considering a white global

reference [227]. Provenzi et al. [238], on the other hand, proposed the use of a local reference

white. They refer that a local reference white, which is equivalent to a locally biased adaptation,

would allow a more effective tone reproduction and mimic the way the human visual system

extracts useful information from the light areas in backlight situations.

Another well known and simple color constancy method is the Gray World hypothesis. In

the literature, the Gray World has been proposed in a variety of forms by a number of different

authors, from the seminal work of Buchsbaum [239] in the early 1980s, until newer extensions

like those proposed by Ebner [226, 240] in the late 2000s. In physical terms, this method assumes

that the average reflectance of the surfaces in a scene is achromatic, i.e. in average the world is

gray. Considering this assumption, any deviation from achromaticity in the average of the scene

color is related to the color illuminant.

One traditional method to estimate the scene illuminant is to firstly find the average intensity of

the image’s R, G, and B color components, and use them to determine a common gray value ḡ for

the image, Equation (4.4). Each color component is then scaled according to it’s deviation from

this gray value. The scale factors αk can be computed dividing the gray value by the appropriate

average of each color component, Equation (4.5). By forcing the Gray World assumption on the

image we are in essence removing the colored lighting effect of the scene illuminant, and thus

restoring the true colors of the image.

avrIk =
1
N

N

∑
x=0

Ik(x) (4.3)

ḡ =
1
3
(avrIR +avrIG +avrIB) (4.4)

αk =
ḡ

avrIk
(4.5)

Igwk = αk Ik (4.6)

where k ∈ {R,G,B}, avrIk is the average intensity in each one of the three RGB channels, ḡ is the

common average gray value for the R, G and B components and Igw is the final image under the

Gray World assumption. The Gray World approach works Similar to the exposure control of digital

cameras, which centres the image histogram dynamically. Since this happens independently on

the three RGB chromatic channels, any eventual global chromatic dominance is eliminated.
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Buchsbaum used the Gray World together with a description of lights and surfaces to derive

an algorithm to recover the scene illuminant E(λ ,x) and the surface reflectance functions S(λ ,x).

Gershon et al. [241] showed that the spatial average computed in the Equation (4.3) is biased

towards surfaces of large spatial extent. In order to alleviate this problem they proposed to segment

the image into patches of uniform color prior to estimating the illuminant. This way, it is possible

to account the response of each surface only once, and thus guarantee an equal weight to surfaces

of any size during the illuminant estimation stage. In [223], Weijer et al. discuss the potential

benefits of considering local averaging instead of the original global average proposition. This

work demonstrates that the global averaging operation ignores important local correlation between

pixels, which can be used to reduce the influence of noise. To exploit this local correlation, they

make use of a local smoothing preprocessing steps, which was proven to be beneficial for color

constancy algorithms [67].

A more recent method is based on the Local Space Average Color (LSAC), which can be

defined as a computational model of how the human visual system performs averaging of image

pixels. The theory is proposed by Ebner and discussed in a number of his publications [226, 227,

240, 242]. The model proposed by Ebner makes two important assumptions. The first, supported

by the research of Zeki and Marini [243] about the cells found in V4, is that the essential processing

required to compute a color constant descriptor in human observers is located in V4. The second,

supported by the work of Herault [244], is that gap junctions behave like resistors. Thus, Ebner

models the gap junctions between neurons in V4 as a resistive grid, which can be used to compute

Local Space Average Color, and then color constant descriptors. Each neuron of this resistive grid

computes the local space average color a(x,y) by iterating the update equations (4.7) and (4.8)

indefinitely for all three bands.

a′(x,y) =
1

|N(x,y)| ∑
(x′,y′)∈N(x,y)

a(x′,y′) (4.7)

a(x,y) = I(x,y) p+a′(x,y) (1− p) (4.8)

where a(x,y) = [aR(x,y),aG(x,y),aB(x,y)] and N(x,y) is the set of the nearest neighbouring neu-

rons. The parameter p is a small percentage that determines the extent over which LSAC is com-

puted. Since p is inversely proportional to the area size, for small values of p LSAC is computed

over large areas, while for large values of p LSAC is computed over a small neighbourhood.

According to Ebner, the iterative computation of Local Space Average Color produce results

which are similar to the convolution of the input image with a smoothing kernel [226]. Approxi-

mating LSAC with a Gaussian kernel we have

a(x,y) =
∫ ∫

I(x′,y′)
1

2πσ2 exp
−
(x− x′)2 +(y− y′)2

σ2 (4.9)

while with an exponential kernel
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a(x,y) =
∫ ∫

I(x′,y′)exp
|x− x′|+ |y− y′|

σ (4.10)

The correspondence between the smoothing factor σ and the parameter p is given by

σ =

√
1− p

4p
(4.11)

The Local Space Average color alone is just a biologically inspired theory that tries to explain

how the brain averages image pixels. However, when this theory is combined with others it can

provide means to achieve color invariant descriptors. Below we summarize two different method-

ologies that Ebner demonstrated can be combined to LSAC to derive such descriptors. The first is

the integration of the LSAC into the Gray World hypothesis, while the second integrates LSAC,

the Gray World hypothesis and the color Shifts theory.

Ebner uses two assumptions to estimate the scene illuminant based on the Gray World [226,

240]. The first is that the illumination is constant over the entire image (Ek(x,y) = Ek). For the

sake of simplicity and without loss of generality, instead of former S(λk,xob j) and E(λk,xob j)

notation, we are going to use Sk(x,y) and Ek(x,y) respectively to define the surface reflectance and

the illuminant of wavelength λk in the location (x,y). Through this premise the Equation (2.5) can

be re-written as:

Ik(x,y) = Sk(x,y)Ek (4.12)

Using the above derivation, the global space average color of an image with n pixels is given

by:

ak =
1
n ∑ Ik(x,y)

=
1
n ∑Sk(x,y)Ek

= Ek
1
n ∑Sk(x,y)

(4.13)

The second assumption is that all colors are likely to occur in the scene. At first, this assump-

tion sounds too strong. But if we assume that several colored objects are present in the scene, and

that no other information about these objects is available, it is reasonable to consider that the col-

ors of these objects are uniformly distributed over the entire color range. An attempt reader should

note that such premise is not valid for all scenes, but only when the scene contains a sufficient

number of different colors. When that is true, and reflectances are distributed between [0,1], the

expected average reflectance of a sufficient large number of pixels is close to:

1
n ∑Sk(x,y)≈

1
2

(4.14)
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Considering a global scene illuminant and uniform reflectance, one can replace the Equa-

tion (4.14) in (4.13), and express the illuminant in function of the global space average color:

ak = Ek
1
2

∴ Ek = 2ak (4.15)

The advantage of Ebner’s work is that if we consider the Gray World assumption in a local

perspective, it is possible to estimate the color of the illuminant at each image pixel.

Ek(x,y)≈ 2ak(x,y) (4.16)

Thus, one can derive a local color invariant descriptor Ok by dividing the intensity Ik of each

pixel by twice the local space average color:

Ok(x,y) =
Ik(x,y)

2ak(x,y)
≈

Ik(x,y)
Ek(x,y)

≈
Sk(x,y)Ek(x,y)

Ek(x,y)
≈ Sk(x,y) (4.17)

As we have seen in the previous above, one possible constant color descriptor is obtained

by dividing each image pixel by twice the space average color. Ebner [226], though, discusses

a second method to obtain a color constant descriptor. This method is based on the research of

Helson [245], which indicates that human observers appear to use color shifts to estimate the color

of achromatic samples illuminated by colored light.

The Gray World hypothesis assumes that the average color of image pixels should be gray.

In other words, the average color should be located on the vector that corresponds to the main

diagonal of the RGB cube, Figure 2.3. If the average color is not located on the gray vector then

it has to be corrected such that the gray world assumption is fulfilled. Ebner’s idea to correct

the average color is to shift the Local Space Average color onto the gray vector. Consider a =

[aR, aG, aB]
T the LSAC in a given pixel located in (x,y), w =

1√
3
[1, 1, 1]T the normalized

gray vector and I = [IR, IG, IB]
T the color of the current pixel. The first step is to compute the

projection of the vector a into the white vector w, Equation (4.18). The second step is to compute

the component ap of the LSAC that is perpendicular to the gray vector, Equation (4.19). The

perpendicular component is then subtracted from the color of the current pixel, resulting in the

color constant descriptor O.

a′ = (a w) w (4.18)

ap = a−a′ (4.19)

O = I−ap (4.20)

Considering k ∈ {R,G,B}, one can express the color descriptor Ok at individual color channels

as:

Ok = Ik−ak +
1
3
(aR +aG +aB) (4.21)
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4.3 Effects of Photometric Variations

Not all color spaces are suitable for digital image processing. For example, one problem of the

CIE RGB and the sRGB spaces in feature tracking is that the algorithm needs to be performed in a

3-D space, thus increasing the computational effort. Furthermore, the RGB space is not invariant

to lighting changes because the intensity channel is a combination of the R, G and B channels.

Therefore, all the gain in information provided by the colorimetric dimensions can be useless

since varying light conditions affect the colors observed. In fact, photometric invariance is less

trivial to achieve, but it is of the utmost importance when dealing with problems such as changes

in the color and direction of the illuminator, and changes in the camera viewpoint.

To understand the effects of the light source variation in filter responses consider an observed

single channel image Io with pixel intensity Io(x,y) at a given point X = (x,y). As we have demon-

strated in the Section 2.5, through the central difference method it is possible to express the second

derivatives of Io(x,y) as:

∂ 2Io(x,y)
∂x2 = Io(x+1,y)−2Io(x,y)+ Io(x−1,y) (4.22)

Now, consider that Io has a corresponding image Iu, taken under unknown illuminant. As-

suming the Diagonal-offset model (2.26) these two images are related by a linear transformation

determined by a scalar constant α and an offset β . Therefore, the pixel intensity Iu(x,y) of the

image Iu at the same point X = (x,y) can be modeled as:

Iu(x,y) = αIo(x,y)+β (4.23)

Thus, it is possible to conclude that the first derivative of Iu(x,y) with respect to x and y is

respectively

∂ Iu(x,y)
∂x

≈ αIo(x+1,y)+β −αIo(x−1,y)+β = α
∂ Io(x,y)

∂x
(4.24)

∂ Iu(x,y)
∂y

≈ αIo(x,y+1)+β −αIo(x,y−1)+β = α
∂ Io(x,y)

∂y
(4.25)

It is also possible to infer that the second derivative of Iu(x,y) with respect to x, y and xy is

respectively

∂ 2Iu(x,y)
∂x2 ≈ αIo(x+1,y)+β −2(αIo(x,y)+β )+αIo(x−1,y)+β

= α
∂ 2Io(x,y)

∂x2

(4.26)
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∂ 2Iu(x,y)
∂y2 = α

∂ 2Io(x,y)
∂y2 (4.27)

∂ 2Iu(x,y)
∂xy

= α
∂ 2Io(x,y)

∂xy
(4.28)

When computing the derivatives, the diffuse term β is canceled out, causing no impact on the

final outcome. However, by varying the illumination with a scalar α , both the first and the second

derivatives vary proportionally with the scalar.

These assumptions, though, are only valid when image pixels are represented using a sufficient

large number of bits per pixel. Lets consider the intensity Io(x,y) = 58 of a pixel located at (x,y)

at an observed image Io. Consider that Io has a corresponding image Iu, of the same scene, taken

under a different illumination. Suppose that the illumination varied according to the Diagonal-

offset model, due to the linear transformation of a scalar term α = 1.2 and an offset term β = 5.

Through 4.23 one can approximate the intensity of Iu at (x,y) as Iu(x,y) = 74.6. Since image

pixels are usually represented using 8 bits (28 = 256 colors), Iu(x,y) has to be approximated to the

nearest integer, which gives us Iu(x,y) = 75. Now, consider a neighboring pixel Io(x+1,y) = 57.

Assuming the same transformation as before, one could estimate the intensity of Iu at (x+1,y) as

Iu(x+1,y) = 73.4, witch would gives us Iu(x,y) = 73 when represented in an 8-bit image. From

the examples above one can note that the rounding operation modifies the intensity independently

for each image pixel. In the first case, the side effect was the addition 0.4 to the pixel intensity,

which accounts for a final β = 5.4 . In the second case, the side effect was the subtraction of 0.4,

accounting for a final β = 4.6. In other words, the offset term β is in reality not constant over the

image, and thus the image derivative does not completely cancel the effect of the offset.

In Chapter 2, Section 2.2, the reader was introduced to the concept of color spaces and fa-

miliarized with the mathematical models used to map from an image representation to another.

Given most feature detection algorithms use luminous intensities as the main input, and that most

cameras senses the environment through three spectral components, it is usual to convert images

from RGB to grayscale. For this reason we now demonstrate the effects of illumination variations

in the derivatives of the luminance of RGB images. Consider an observed three layer RGB image

Io(x,y,c). From the Equation (2.8), we can express the luminance Yo(x,y) of this image as the

weighted sum of its color channels:

Yo(x,y) = ∑
c

wcIo(x,y,c) (4.29)

where c ∈ {R,G,B}, and wc is the weight of the corresponding color channel. Now, consider that

Io has a corresponding image Iu, taken under unknown illuminant. Assuming the Diagonal-offset

model (2.26) these two images are related by a linear transformation that affects independently

each color channel and that is determined by a scalar constant αc and an offset βc. Therefore, the

luminance Yu(x,y) of Iu(x,y) can be modeled with respect to Io(x,y,c):
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Yu(x,y) =wR(αRIo(x,y,R)+βR)+wG(αGIo(x,y,G)+βG)

+wB(αBIo(x,y,B)+βB)
(4.30)

Since each color channel of the RGB image can be treated as an independent single channel

image, it is possible to take advantage of the logic developed in the Equations (4.24) and (4.25) to

express the first derivative of Yu(x,y) with respect to x and y respectively as:

∂Yu(x,y)
∂x

= αRwR
∂ Io(x,y,R)

∂x
+αGwG

∂ Io(x,y,G)

∂x
+αBwB

∂ Io(x,y,B)
∂x

(4.31)

∂Yu(x,y)
∂y

= αRwR
∂ Io(x,y,R)

∂y
+αGwG

∂ Io(x,y,G)

∂y
+αBwB

∂ Io(x,y,B)
∂y

(4.32)

With the same mechanism, it is possible to express the second derivative of Yu(x,y) with re-

spect to x, y and xy respectively as:

∂ 2Yu(x,y)
∂x2 = αRwR

∂ 2Io(x,y,R)
∂x2 +αGwG

∂ 2Io(x,y,G)

∂x2 +αBwB
∂ 2Io(x,y,B)

∂x2 (4.33)

∂ 2Yu(x,y)
∂y2 = αRwR

∂ 2Io(x,y,R)
∂y2 +αGwG

∂ 2Io(x,y,G)

∂y2 +αBwB
∂ 2Io(x,y,B)

∂y2 (4.34)

∂ 2Yu(x,y)
∂xy

= αRwR
∂ 2Io(x,y,R)

∂xy
+αGwG

∂ 2Io(x,y,G)

∂xy
+αBwB

∂ 2Io(x,y,B)
∂xy

(4.35)

The Equations (4.31) to (4.35) illustrate the derivatives of images subjected to transformations

like the light color change and the light color change and shift (Section 2.3), which present non-

uniform scalars over the three color components (αR 6=αG 6=αB). Since each scalar has a different

value and affect individually one of the three terms that describe the derivatives of Yu(x,y), it is

not possible to rearrange or simplify the equation in order to combine and isolate the effect of the

scalars over the Yu(x,y) derivative. Consequently, it is not possible to achieve full photometric

invariance through arithmetic operations when performing feature detection in the luminance of

RGB images.

A simple but yet effective way of increasing the robustness of the features detected in se-

quences of images consists in performing the detection operation independently over each color

channel of the RGB image. An additional advantage of such approach is the increase in the number

of features, since detection occurs in three "images", instead of in only one.

As previously discussed, feature localization is a three-step process that starts disregarding

points in which blob-response is lower than a fixed threshold value. If, however, the detector

responses vary with the illumination, a given feature that is detected in a bright image may not be
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detected in a corresponding image with lower illumination levels. For this reason, the impact of

illumination changes in the response of the three most popular feature detectors will be analyzed in

the following subsections. Note that, for reasons discussed above, the further analysis will consider

that images are single channel, or that the detection occurs in each color channel independently.

4.3.1 Effects of Photometric Variations in Harris Corners Responses

As detailed in the Section 2.8.1, the Harris Corner algorithm detects image features when both the

eigenvalues of the covariance matrix are high. Through 2.53 the covariance matrix of the pixel

located at (x,y), of an image Iu taken under unknown illuminant, can be expressed as

Cu(x,y) =


(

∂ Iu(x,y)
∂x

)2
∂ Iu(x,y)

∂x
∂ Iu(x,y)

∂y
∂ Iu(x,y)

∂x
∂ Iu(x,y)

∂y

(
∂ Iu(x,y)

∂y

)2

 (4.36)

We have also discussed that since the computation of the eigenvalues is computationally ex-

pensive, Harris and Stephens [50] suggested that the detector response could be approximated

using the determinant and the trace of the covariance matrix. Thus, the detector function at Iu(x,y)

can be obtained through

Ru(x,y) = det(Cu(x,y))− k trace2(Cu(x,y)) (4.37)

The determinant and the trace of the covariance matrix Cu(x,y) can be expressed respectively

as

det(Cu(x,y)) =
(

∂ Iu(x,y)
∂x

)2(
∂ Iu(x,y)

∂y

)2

−
(

∂ Iu(x,y)
∂x

∂ Iu(x,y)
∂y

)2

(4.38)

trace(Cu(x,y)) =
(

∂ Iu(x,y)
∂x

)2

+

(
∂ Iu(x,y)

∂y

)2

(4.39)

Replacing the Equations (4.24) and (4.25) into (4.38), it is possible to obtain the determinant

of the covariance matrix Cu(x,y) with respect of Io(x,y) by

det(Cu(x,y)) = α
2
(

∂ Io(x,y)
∂x

)2

α
2
(

∂ Io(x,y)
∂y

)2

−
(

α
2 ∂ Io(x,y)

∂x
α

2 ∂ Io(x,y)
∂y

)2

det(Cu(x,y)) = α
4

((
∂ Io(x,y)

∂x

)2(
∂ Io(x,y)

∂y

)2

−
(

∂ Io(x,y)
∂x

∂ Io(x,y)
∂y

)2
)

det(Cu(x,y)) = α
4 det(Co(x,y))

(4.40)

With the same mechanism, one can express the trace of Cu(x,y) in function of Io(x,y) by

replacing the Equations (4.24) and (4.25) into (4.39)
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trace(Cu(x,y)) = α
2
(

∂ Io(x,y)
∂x

)2

+α
2
(

∂ Io(x,y)
∂y

)2

trace(Cu(x,y)) = α
2

((
∂ Io(x,y)

∂x

)2

+

(
∂ Io(x,y)

∂y

)2
)

trace(Cu(x,y)) = α
2 trace(Co(x,y))

(4.41)

Finally, replacing the determinant (4.40) and the trace (4.41) into (4.37) we can express the

Harris Corner response function Ru in terms of the pixel intensities of the observed image Io(x,y).

Ru(x,y) = α
4 det(Co(x,y))− k

(
α

2 trace(Co(x,y))
)2

Ru(x,y) = α
4 det(Co(x,y))−α

4 k trace2(Co(x,y))

Ru(x,y) = α
4 Ro(x,y)

(4.42)

The Equation (4.42) demonstrates the correlation between the Harris corners responses Ru and

Ro, given the linear transformation determined by a scalar term α and an offset term β . The degree

of the polynomial (α4) provides the theoretical explanation to why even small variations in the

scene illuminant cause large variation in the magnitude of the detector response.

4.3.2 Effects of Photometric Variations in SIFT Responses

As detailed in the Section 2.8.3, the response of the SIFT detector at a given pixel located at (x,y),

of an image Iu(x,y) taken under unknown illuminant, is given by the trace and the determinant of

the Hessian matrix Hu(x,y):

Ru(x,y) =
(trace(Hu(x,y)))

2

det (Hu(x,y))
(4.43)

From the Hessian matrix Hu(x,y),the determinant and the trace are given respectively by:

det(Hu(x,y)) =
∂ 2Iu(x,y)

∂x2
∂ 2Iu(x,y)

∂y2 −
(

∂ 2Iu(x,y)
∂xy

)2

(4.44)

trace(Hu(x,y)) =
(

∂ 2Iu(x,y)
∂x2 +

∂ 2Iu(x,y)
∂y2

)
(4.45)

Replacing the Equations (4.26), (4.27) and (4.28) in (4.44) we can express the determinant of

Hu(x,y) with respect to the determinant of the Hessian matrix of the observed image Io(x,y):

det(Hu(x,y)) = α
∂ 2Io(x,y)

∂x2 α
∂ 2Io(x,y)

∂y2 −
(

α
∂ 2Io(x,y)

∂xy

)2

det(Hu(x,y)) = α
2

(
∂ 2Io(x,y)

∂x2
∂ 2Io(x,y)

∂y2 −
(

∂ 2Io(x,y)
∂xy

)2
)

det(Hu(x,y)) = α
2 det(Ho(x,y))

(4.46)
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A similar operation can be performed to express the trace of Hu(x,y) with respect to the trace

of the reference image Io(x,y):

trace(Hu(x,y)) = α
∂ 2Io(x,y)

∂x2 +α
∂ 2Io(x,y)

∂y2

trace(Hu(x,y)) = α

(
∂ 2Io(x,y)

∂x2 +
∂ 2Io(x,y)

∂y2

)
trace(Hu(x,y)) = α trace(Ho(x,y))

(4.47)

Finally, replacing the determinant (4.46) and the trace (4.47) into (4.43) we can express the

SIFT response function Ru in terms of the pixel intensities of the observed image Io(x,y).

Ru(x,y) =
α2 (trace(Ho(x,y)))

2

α2 det(Ho(x,y))

Ru(x,y) = Ro(x,y)

(4.48)

The Equation (4.48) provides the theoretical foundations to explain the robustness of the SIFT

detector to variations in scene illumination. Since both the scalar and the offset terms are canceled,

SIFT responses should be invariant to all types of illumination variations in single channel images.

Note that the same behavior is not observed when using the luminance of the RGB images that are

subjected to transformations like the light color change and the light color change and shift.

4.3.3 Effects of Photometric Variations in SURF Responses

Using SURF for feature detection, the filter response Ru is computed through the determinant of

the Hessian matrix.

Hu(x,y) =


∂ 2Iu(x,y)

∂x2
∂ 2Iu(x,y)

∂xy
∂ 2Iu(x,y)

∂xy
∂ 2Iu(x,y)

∂y2

 (4.49)

Ru(x,y) =
∂ 2Iu(x,y)

∂x2
∂ 2Iu(x,y)

∂y2 −
(

∂ 2Iu(x,y)
∂xy

)2

(4.50)

Replacing the Equations (4.26) to (4.28) into (4.50), the filter response Ru can be expressed in

terms of Ro

Ru(x,y) = α
∂ 2Io(x,y)

∂x2 α
∂ 2Io(x,y)

∂y2 −
(

α
∂ 2Io(x,y)

∂xy

)2

Ru(x,y) = α
2Ro

(4.51)

The Equation (4.51) demonstrates the correlation between the SURF responses Ru and Ro,

given the linear transformation determined by a scalar term α and an offset term β . The degree of

the polynomial (α2) provides the theoretical explanation to why variations in the scene illuminant

cause significant variations in the magnitude of the detector response.
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4.4 Photometric Invariance Through Local Normalization: LN SURF

As detailed in the Literature Review (Section 4.2.1), authors usually use color space mapping to

deal with illumination changes. The concept is that decoupled color spaces provide invariant data,

which in turn can be used to compute invariant filter responses. However, this kind of approach

presents several undesirable secondary effects, such as the introduction of noise and of instabilities

in pixels near the grayscale. Normalization techniques are popular in computer vision, specially

for solving the variable illumination problem in face recognition context [246, 247]. The contri-

bution of this work consists on the combination of the local normalization (LN) technique with

feature detection algorithms to provide them with photometric invariance properties.

For this reason, our first approach works under a different viewpoint. Rather than trying to

achieve invariance through color space mapping, the variables used to compute filter responses are

normalized, thus deriving invariant feature responses over regular RGB images. To normalize the

variables and eliminate the effects of the scalar noise α , we take advantage of the local normal-

ization (LN) technique. Pixel normalization (Iz) is achieved by dividing the difference between an

the pixel’s intensity (I) and the mean (µ) by the standard deviation σ , equation(4.52).

Iz =
I−µ

σ
(4.52)

Rather than working with the mean intensity and standard deviation of the entire image, the

mean and the standard deviation are computed for the set of N pixels inside the filter under anal-

ysis. This way, our approach can handle variable offsets and scale for different regions of the

image. The resulting intensity value is of local zero mean and with a unit variance within the filter.

Considering an observed image fo with pixel intensity Io(x,y) at a given point X = (x,y), mean µo

and standard deviation σo, the normalized intensity Ioz(x,y) can be expressed as follows:

µo =
1
N

N

∑
i=0

Io(x,y) (4.53)

σo =

√
1
N

N

∑
i=0

(Io(x,y)−µo)
2 (4.54)

Ioz(x,y) =
Io(x,y)−µo

σo
(4.55)

The effects of the variation caused by a scalar α and by an offset β in the mean (µu) and in the

standard deviation (σu) of the corresponding image fu, can be described as:

µu =
1
N

N

∑
i=0

(αIo(x,y)+β ) = αµo +β (4.56)
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σu =

√
1
N

N

∑
i=0

(αIo(x,y)+β − (αµo +β ))2 = ασo (4.57)

Therefore, one can express the normalized intensity Iuz in function of Ioz

Iuz(x,y) =
(αIo(x,y)+β )− (αµo +β )

ασo
(4.58)

=
α(Io(x,y)−µo)

ασo
(4.59)

=
Io(x,y)−µo

σo
(4.60)

= Ioz(x,y) (4.61)

Computing the second derivative of Iz(x,y) with respect to x gives:

d2Iz(x,y)
dx2 =

Iz(x+1,y)−2Iz(x,y)+ Iz(x−1,y)
σ

(4.62)

The same applies for the second derivative in y and xy. Once the derivatives of z-scored values

are independent of the scalar α and the offset β , the response values for both images are equal:

Ru = Ro (4.63)

Computing the standard deviation through its definition is a very demanding task, especially

because this operation is performed each time the filter response is computed. A more efficient

way to compute the standard deviation is given through the Equation (4.64), which reduces the

necessary number of operations from (4N + 2) to (3N + 4), and the number of memory access

from (3N +1) to (2N +2).

σ =

√√√√ 1
N

(
N

∑
i=0

I(x,y)2

)
−µ2 (4.64)

Indeed, despite the reduction in the number of operations, the computational cost necessary

to estimate the standard deviation through is still very high. Note that the number of required

operations grows fast with the size of the filter, i.e. becoming as high as 885 for l = 21 and

19605 for l = 99. For this reason, we propose a much more efficient way to estimate the standard

deviation, combining (4.64) with the concept of integral images.

I2
∑
(x,y) =

i<y+h

∑
i=y−h

j<x+h

∑
j=x−h

I(x,y)2 (4.65)

By computing beforehand the sum of the squared pixel intensity for the entire image, it is pos-

sible to compute the standard deviation of any filter with only 5 operations and 4 memory access.
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Algorithm 1 LN SURF feature detector
Definitions:

rgbImg: 3 layer matrix containing the red, green and blue values of image pixels
f eatures: structure containing the 2D location (camera reference frame), description, and
response of salient image regions

1: function LNSURF(rgbImg)
2: grayImg← rgb2gray(rgbImg)
3: nCols← rgbImg.cols
4: nRows← rgbImg.rows
5: intImg← gray2int(grayImg)
6: intSqrImg← gray2intSqr(grayImg)

7: for scale = 1 to nScales do
8: size = scale2 f ilterSize(scale)
9: for row = 1 to nRows do

10: for col = 1 to nCols do
11: sur f Resp = DxxDyy−0.81Dxy2

12: µ = sumPixels(intImg,row,col,size)/size2

13: σ2 = sumPixels(intSqrImg,row,col,size)/size2−µ2

14: response[scale,row,col] = sur f Resp/σ2 . Normalized SURF response
15: end for
16: end for
17: end for

18: f eatures← extremum(response) . Non-maximal suppression

19: f eatures← describeFeatures(intImg, f eatures)

20: return f eatures
21: end function

Just like the classic integral image, computing the squared integral image has some computational

cost, but this initial cost is paid off after just a few filter convolutions.

The pseudo-code for the LN SURF algorithm is detailed in the Algorithm 1. The system

first convert the rgb image to gray scale (line 2). Next, it computes the corresponding integral

and integral squared images (lines 5 and 6). For each pixel and scale, it is computed the SURF

response, mean and standard deviation of the pixel intensities inside the filter (lines 11, 12 and

13). Then it is computed the locally normalized SURF response (line 14). Finally, the algorithm

performs the usual SURF operations of non-maximal suppression (to detect salient image regions),

interpolation in scale and space (for sub-pixel accuracy), and feature description.
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4.5 Photometric Invariance Through Color Constancy: LSAC SURF

Among color constancy methods, gamut mapping is referred in literature as one of the most suc-

cessful algorithms [228, 223, 248, 231]. It has demonstrated good results in different datasets of

several works. The method is though computationally quite complex. Its implementation requires

the computation of two convex hulls, which is a difficult problem when using finite precision

arithmetic. Another drawback is that the algorithm requires an image data set with known light

sources. As previously discussed, only through this dataset the algorithm is able to estimate the

canonical gamut (learning phase) that will be used to compute the transformation matrix, and thus

estimate the illuminant (testing phase). In practice, such methodology is not viable for robotic

vision systems since robots are not constrained to one specific scenario, but subjected to multiple

and dynamic environments.

Low level color constant algorithms, on the other hand, are less complex, faster and only

slightly outperformed by the gamut mapping [249, 248, 67]. These characteristics make them

perfect candidates for improving robotic vision systems. One limitation of the Gray World as-

sumption is that it is only valid in images with sufficient amount of color variations. Only when

the variations in color are random and independent, the average value of the R, G, and B compo-

nents of the image would converge to a common gray value. This assumption is, however, held

very well in several real world scenarios, where it is usually true that there are a lot of different

color variations.

Another limitation of most color constancy algorithms is that they are modeled with the as-

sumption that the scene is uniformly illuminated. Since in practice multiple illuminants are present

in the scene, the illumination is not uniform, and thus the premise is not fully verified. For instance,

some daylight may be falling through a window while an artificial illuminant may be switched on

inside the room. In fact, that may be the main advantage of the descriptors derived from the Local

Space Average color methodology. Since LSAC estimates the illuminant locally for each point of

the scene, its descriptors are better prepared to deliver color constancy in real world images.

Most of the proposed color invariant feature detectors combine the original detector with some

sort of color space mapping. Our approach to achieve photometric invariant feature responses,

LSAC SURF, consists on taking advantage of the invariant properties of the LSAC descriptor,

using it as working space for feature detection. The inclusion of this pre-processing step adds a

small computational load, but may provide a significant increase in feature detection robustness.

The size of the window that LSAC is computed plays an important role in the robustness of the

feature detection. Empirical observation demonstrated that feature repeatability tends to perform

better when LSAC is computed over small neighborhoods. In fact, due to the multiple illumination

sources the values of α and β tends to vary significantly in distant image pixels, which makes the

assumption that Ek(x,y)≈ 2ak(x,y), Equation (4.16), to be valid only for small regions.
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Algorithm 2 LSAC SURF feature detector
Definitions:

rgbImg: 3 layer matrix containing the red, green and blue values of image pixels
f eatures: structure containing the 2D location, description and response of visual features

1: function LSACSURF(rgbImg)
2: nCols← rgbImg.cols
3: nRows← rgbImg.rows
4: grayImg← rgb2gray(rgbImg)
5: intImg← gray2int(grayImg)

6: for row = 1 to nRows do
7: for col = 1 to nCols do
8: ak = gauss(intImg, f ilterSize) . LSAC Gaussian approximation
9: lsacDesc[row,col] = grayImg[row,col]/(2 ak) . LSAC descriptor

10: end for
11: end for

12: f eatures← SURF(lsacDesc) . SURF detection over the LSAC descriptor

13: for i = 1→ nFeatures do
14: px← grayImg[ f eatures[i].row, f eatures[i].col]
15: if lowerT h > px > upperT h then
16: hardFeatures.add( f eatures[i])
17: else if 0 > px > lowerT h or upperT h > px > 254 then
18: so f tFeatures.add( f eatures[i])
19: end if
20: end for
21: return so f tFeatures, hardFeatures
22: end function

When a pixel reaches saturation, it does not present the same variation as its neighbors, causing

non linear variations in the response of the feature detector and decreasing the probability to be

correctly matched in subsequent images. Therefore, features which pixel intensities are close to

saturation are not good matching purposes. However, such features can not simple be ignored since

under certain illumination variations their pixel intensity can move away from saturation, and make

them good candidates for matching in subsequent images. For this reason, each detected feature is

classified into hard and soft features according to their pixel intensities. If the pixel intensity of a

distinct image region is lower than an upper threshold and higher than a lower threshold the feature

is classified as hard feature, on the contrary, the feature is classified as soft feature. The choice

of the proper upper and lower threshold values might be determined according to the expected

variation in the scene illumination.

Since hard features are more likely to be found in subsequent images, we can reduce the search

space and match only the current hard features with the subsequent set of features. In this context,

soft features are used only to support matching of previous hard features, while hard features are
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used in in the computation of sensitive visual tasks.

The pseudo-code for the LSAC SURF algorithm is detailed in the Algorithm 2. First, the

system convert the rgb image to gray scale (line 4). Next, it computes its corresponding integral

image (line 5). For each image pixel, the algorithm approximates the local space average color

with a Gaussian kernel (line 8). In order to speed up the algorithm, the convolution with the

Gaussian kernel is approximated using box type filters and integral images. Later, it computes

the local space average color descriptor as the ratio between the image pixel intensity and the

local average color (line 9). Following, the algorithm performs the usual SURF feature detection

and description operations using the LSAC descriptor as working space (line 12). Finally, the

algorithm classifies the detected features into hard or soft features according to an upper and a

lower thresholds (lines 13 to 22).

4.6 Experiments and Results

To evaluate the performance of our approach we adopted the repeatability criterion similar to the

proposed by Schmid et al. [250]. The repeatability rate evaluates the ratio between the number of

point-to-point correspondences that can be established for detected points in all images of the same

scene C(I1, ..., In) and the total number of features detected in the current image mi, as described

the following relation:

Ri =
C(I1, I2, ..., In)

mi
(4.66)

where Ri denotes the repeatability rate of the image under analysis, C(I1, I2, ..., In) the number of

corresponding features, n the number of images of the same scene, and mi the number of features

detected in i. Therefore, the higher the repeatability, the more likely features are to be matched

and the better the matching results tend to be.

The repeatability rate of our approaches are compared with the repeatability rate of the SURF

algorithm available in the OpenCV library. For the comparison to be fair, the optimum values

were assigned to the SURF parameters, as described in [55], and the threshold of the LN SURF

was adjusted to match the number of features detected by the original algorithm.

The next experiments compare the repeatability rates of the original SURF algorithm and the

two proposed extensions. Four images collections provide shift, scale, color variations, that allows

us to asses the performance of the algorithms in the most common illumination transformations. In

addition, two other image collections provide small and large photometric changes in real world

scenarios. For each image collection, both algorithms are applied and their repeatability rate

computed. Finally, through a hypothesis test of matched pairs, a statistical analysis is performed

to determine if there was a significant improvement in the feature repeatability.

Since several hypothesis tests assume that data is normally distributed, a first step to choose

the most appropriate test consists on determining whether or not the observations can be modeled

by a normal distribution. For this purpose, we performed an exploratory data analysis (EDA)
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and normality tests. The EDA provides clues (mean, median, skewness and kurtosis) about the

normality of the distribution, and is important to summarize and understand the data set main

characteristics. A first indication about the normality of the observation is given by the values of

the median and the mean. Since normality implies symmetry around an inflection point, the mean,

median, and mode are expected to be all the same and coincident with the peak of the curve.

Another indication of symmetry is given by the skewness of the distribution. The distribution is

considered different from the normal to a significant degree when the absolute value of skewness is

more than twice the standard error of skewness. The kurtosis characterizes the relative peakedness

or flatness (relative concentration of rates) of a distribution compared to the normal distribution.

Like the skewness, the distribution is considered different from the normal to a significant degree

when the absolute value of kurtosis is more than twice the standard error of kurtosis.

The normality test is used to verify the conclusions inferred from the EAD, in which samples

are standardized and compared with a standard normal distribution. Here, the size of the sample

indicates the most appropriate test. Observations performed in image collections with more than

50 images will be tested with the Kolmogorov-Smirnov test, and with less than 50 images will be

tested with the Shapiro–Wilk test. Considering a 95% confidence interval, the distribution is not

considered normally distributed when the p-value is lower than α = 0.05 (i.e. the null hypothesis

is rejected).

Finally, a statistical hypothesis test is used to verify if there is significant difference in the

repeatability rate of the original and the proposed algorithms. As mentioned above, the most

appropriate test depends on the nature of the observations. Normally distributed observations will

be evaluated through the paired Student’s t-test, while non-normally distributed observations will

be evaluated through the Wilcoxon signed rank test. Like the normality tests, a 0.05 significance

level is used to verify if the the data rejects (p− value < 0.05) or fail to reject the null hypothesis.

4.6.1 Controlled Image Set

The purpose of the controlled image set is to provide images with known illumination variations

to assess the robustness of the feature detection algorithms. The dataset is composed of four

collections, containing 9,000 images of 1,000 objects each, under three categories of the most

common changes in the illumination values: LIC, LIS and LCC, Equations (2.29),(2.30) and (2.25)

respectively. The LICS and LCCS category were not included because they are only a combination

of the other three categories.

Images were taken of the Amsterdam Library of Object Images (ALOI) [251]. ALOI is a color

image dataset of one thousand small objects recorded under different viewing angles, illumination

angles and illumination colors with a total of 110,250 images. From the desired categories of

illumination variation, ALOI could only provide images to evaluate features in the presence of

light color change. In the ALOI illumination color collection (ALCC), the color of the illumination

source varies from yellow to white according to the voltage v0 of the lamps, where v0 = 12i/255

volts and i ∈ {110,120,130,140,150, 160,170,180,190} (Figure 4.1).
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Figure 4.1: Samples from the ALCC collection. From left to right: the value of i is respectively
120, 140, 160,180, 210.

Figure 4.2: Samples from the LIC collection. From left to right: the value of α is respectively
1/1.20, 1/1.2, 1, 1.2, 2.0.
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Figure 4.3: Samples from the LIS collection. From left to right: the value of β is respectively -20,
-10, 0, 10, 20.

Figure 4.4: Samples from the LCC collection. From left to right: the value of α is respectively
0.2, 0.4, 0.6, 0.8, 1.0 for the Red and Green channels while keeping α = 1.0 for the Blue channel.
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Figure 4.5: Real world image set: camera mounted in a fixed position in an office environment.
The scene illumination was slight varied through the combination in the state (on/off) of ceiling
lightings.

Figure 4.6: Real world image set: camera mounted in a fixed position in an robotic soccer field.
The scene illumination was significantly varied through the combination in the state (on/off) and
intensity of ceiling lightings.
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The remaining conditions were artificially created by performing the appropriate transfor-

mations to one reference image of each object in the ALOI dataset. The LIC collection was

designed to evaluate the effects of a scalar variation in the light source. To create this collec-

tion, all the RGB channels of the reference images were equally multiplied by a factor α ∈
{1/2.0,1/1.5,1/1.2,1/1.1,1,1.1,1.2,1.5,2.0}, Figure 4.2. The LIS collection is designed to

evaluate the algorithm’s shift invariance. To create this collection, all the RGB channels of the

reference images were equally shifted by an offset β ∈ {−20,−15,−10,−5,0,5,10,15,20}, Fig-

ure 4.3. The LCC was designed to evaluate the algorithm’s color invariance. Its main difference

to the ALCC collection is the color transition of the illuminant, which varies from bluish to white

in the LCC. To create this collection, the red and green channels of the reference images were

multiplied by a factor α ∈ {0.2,0.3,0.4,0.5,0.6,0.7,0.8,0.9,1.0}, while keeping α ∈ {1.0} for

the Blue channel, Figure 4.4.

4.6.2 Real World Image Set

In order to assess the robustness of the proposed feature detection algorithms on real world images,

real illumination conditions and variations, we created a real world image set composed by the

Office and the Soccer image collections. The Office collection is a set of nine images. To collect

these images, a camera was mounted in a fixed position in a typical office environment. Between

each scene captured, the room illumination was slight varied through combinations in the state

(on/off) of ceiling lightnings. A reduced size sample of the images from this collection are depicted

in the Figure 4.5.

The Soccer data set is a more harsh set of images. It consists of thirteen indoor images of

a robotic soccer field, taken with the camera mounted in a fixed position. In this collection, the

scene illumination was varied through several combinations in the state as well as in the intensity

of individually regulated ceiling lightnings. This dataset offers a more challenging environment

for robust feature detection since it contains non-uniform illumination due to multiple sources (dif-

ferent bulb lamps in the ceiling and natural illumination from the windows), as well as variations

in the color of the illuminant, shading, shadows, specularities, and interreflections. A reduced size

sample of the images from this collection are depicted in the Figure 4.6

4.6.3 Shift Invariance Experiment

Figures 4.7,4.8 and 4.9, presents the results of SURF, LN SURF and LSAC SURF repeatability

rates for shift variation β ∈ {−20,−15,−10,−5,0,5,10,15,20} (LIS image collection). An ex-

ploratory data analysis reveals a difference between the mean and the median repeatability rate in

both algorithms, Table 4.4, which indicates that the observations may not be well modeled by a

normal distribution. The same tendency is verified through the values of the skewness and kurtosis,

which fall out of the two standard error range.

At 0.05 significance level, the Kolmogorov-Smirnov test confirms that the distribution of either

algorithms (p<0.001) are not normally distributed. The box plot presented in the Figure 4.10
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Figure 4.7: Histogram of SURF repeatability rate in the LIS image collection.

depicts the increase of the median repeatability rate from the original algorithm to both LN SURF

and LSAC SURF. One drawback of both proposed algorithms was the increase of the statistical

dispersion, demonstrated by an increase in the interquartile range and in the standard deviation.

Figure 4.11 depicts a high median repeatability rate for the three algorithms, which was held

above 85% in all illumination conditions. The statistical analysis performed with the Wilcoxon

signed rank test (Table 4.5) indicated no statistical evidence that the repeatability of LN SURF is

greater than the original SURF (Z =−0.970, pUD = 0.162). On the other hand, when comparing

SURF with LSAC SURF the test indicated that LSAC SURF provided greater feature repeatability

(Z =−13.999, pUD < 0.001).

Table 4.4: Descriptives of the shift invariance experiment - LIS image collection.

SURF LN SURF LSAC SURF
Statistic Std Error Statistic Std Error Statistic Std Error

Mean 91.2992 0.11390 87.9670 0.20866 92.3679 0.13705
Median 94.3396 100.0000 100.0000
Variance 116.749 391.853 169.035
Std. Deviation 10.80506 19.79528 13.00133
Skewness -3.648 0.026 -2.120 0.026 -2.514 0.026
Kurtosis 20.443 0.052 4.562 0.052 7.647 0.052

Table 4.5: Wilcoxon signed rank test of the shift invariance experiment - LIS image collection.

LN SURF - SURF LSAC SURF - SURF
N Mean Rank Sum of Ranks N Mean Rank Sum of Ranks

Negative Ranks 3206 5506.78 17654727.00 3120 4680.63 14603563.50
Positive Ranks 5146 3347.73 17227401.00 5300 3933.74 20848846.50
Ties 648 580
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Figure 4.8: Histogram of LN SURF repeatability rate in the LIS image collection.
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Figure 4.9: Histogram of LSAC SURF repeatability rate in the LIS image collection.
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Figure 4.10: Box plot of SURF, LN SURF and LSAC SURF repeatability rates in the LIS image
collection. The median repeatability is represented by the horizontal line drawn in the box. The
lower quartile value is at the bottom of the box, while the upper quartile value is at the top. The
whiskers represent the minimum and the maxim values.
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Figure 4.11: A comparison between the median repeatability rate of SURF and the
two proposed algorithms over the controlled images present in the LIS collection (β ∈
{−20,−15,−10,−5,0,5,10,15,20}).
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4.6.4 Scale Invariance Experiment

Figures 4.12, 4.13 and 4.14, presents the results of SURF, LN SURF and LSAC SURF repeata-

bility rates for a scale variation α ∈ {1/2.0,1/1.5,1/1.2,1/1.1,1,1.1,1.2,1.5,2.0} (LIC image

collection). Once again, the exploratory data analysis reveals a difference between the mean and

the median repeatability rate in both algorithms, Table 4.6, indicating that the observations may

not be well modeled by a normal distribution. This tendency is also verified through the values of

the skewness and kurtosis, which fall out of the two standard error range.

At 0.05 significance level, the Kolmogorov-Smirnov test confirms that the distribution of ei-

ther algorithms (p<0.001) are not normally distributed. The box plot presented in the Figure 4.15

depicts a significant increase of the median repeatability rate from SURF to both LN SURF and

LSAC SURF. An additional advantage of both proposed algorithms was the decrease of the sta-

tistical dispersion, demonstrated by a reduction in the interquartile range, and in the standard

deviation.

As shown in Figure 4.16, the median repeatability rate of SURF algorithm tend to decrease

with higher values of α . Such observation is explained from the maximum number of common

features, which is limited by the image with the smallest number of features detected. Since SURF

detection response is proportional to α2, the smallest number of features tends to be detected in

darker images (α < 1). The proposed algorithms, on the other hand, demonstrate a much higher

and constant mean repeatability rate. The Wilcoxon signed rank test (Table 4.7) indicated that

both LN SURF (Z =−78.782, pUD < 0.001) and LSAC SURF (Z =−79.999, pUD < 0.001)

provided a significant increase in the feature repeatability.

Table 4.6: Descriptives of the scale invariance experiment - LIC image collection.

SURF LN SURF LSAC SURF
Statistic Std Error Statistic Std Error Statistic Std Error

Mean 46.4145 0.28265 88.5662 0.20866 87.7919 0.16143
Median 44.0000 100.0000 93.0035
Variance 719.025 386.916 234.530
Std. Deviation 26.81465 19.67019 15.31438
Skewness 0.418 0.026 -2.126 0.026 -1.840 0.026
Kurtosis -0.483 0.052 4.381 0.052 4.090 0.052

Table 4.7: Wilcoxon signed rank test of the scale invariance experiment - LIC collection.

LN SURF - SURF LSAC SURF - SURF
N Mean Rank Sum of Ranks N Mean Rank Sum of Ranks

Negative Ranks 308 885.76 272815.50 354 706.12 249965.50
Positive Ranks 8221 4391.60 36103369.50 8267 4465.36 36915165.50
Ties 471 379
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Figure 4.12: Histogram of SURF in the LIC image collection.
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Figure 4.13: Histogram of LN SURF in the LIC image collection.
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Figure 4.14: Histogram of LSAC SURF in the LIC image collection.
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Figure 4.15: Box plot of SURF, LN SURF and LSAC SURF repeatability rates in the LIC image
collection. The median repeatability is represented by the horizontal line drawn in the box. The
lower quartile value is at the bottom of the box, while the upper quartile value is at the top. The
whiskers represent the minimum and the maxim values.
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Figure 4.16: A comparison between the median repeatability rate of SURF and the
two proposed algorithms over the controlled images present in the LIC collection (α ∈
{1/2.0,1/1.5,1/1.2,1/1.1,1,1.1,1.2,1.5,2.0}).
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4.6.5 Color Invariance Experiment

Figures 4.17, 4.18 and 4.19, presents the repeatability rates for a color variation from yellow to

white (ALCC image collection). The exploratory data analysis reveals a difference between the

mean and the median repeatability rate in both algorithms, Table 4.8, indicating that the observa-

tions may not be well modeled by a normal distribution. This tendency is also verified through the

values of the skewness and kurtosis, which fall out of the two standard error range.

At 0.05 significance level, the Kolmogorov-Smirnov test confirms that the distribution of either

algorithms (p<0.001) are not normally distributed. The box plot presented in the Figure 4.20

depicts the constancy of the median repeatability rate. When comparing SURF with LN SURF,

one can note an increase in the statistical dispersion, denoted by both the interquartile range and

the standard deviation. On the other hand, when comparing with LSAC SURF one can note a

decrease in the standard deviation, and consequently a reduction in the statistical dispersion.

It can be seen from the Figure 4.21 that none of the algorithms was significantly affected

when varying the color of the illuminant from yellow to white. In this illumination condition,

the Wilcoxon signed rank test (Table 4.9) did not provide statistical evidence that the neither LN

SURF (Z =−10.583, pUD = 0.160) nor LSAC SURF (Z =−10.583, pUE < 0.001) were able to

improve the repeatability.

Table 4.8: Descriptives of the color invariance experiment. Variation in the color of the illuminant
from yellow to white - ALCC collection.

SURF LN SURF LSAC SURF
Statistic Std Error Statistic Std Error Statistic Std Error

Mean 92.4384 0.11390 91.7943 0.20866 91.8599 0.08735
Median 94.8617 95.8791 93.5484
Variance 102.391 157.733 68.663
Std. Deviation 10.11887 12.55920 8.28633
Skewness -3.912 0.026 -3.266 0.026 -2.881 0.026
Kurtosis 25.054 0.052 16.254 0.052 18.952 0.052

Table 4.9: Wilcoxon signed rank test of the color invariance experiment. Variation in the color of
the illuminant from yellow to white - ALCC collection.

LN SURF - SURF LSAC SURF - SURF
N Mean Rank Sum of Ranks N Mean Rank Sum of Ranks

Negative Ranks 3763 4279.20 16102617.50 4808 4244.52 20407645.50
Positive Ranks 4314 3829.48 16520385.50 3681 4245.63 15628159.50
Ties 923 511
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Figure 4.17: Histogram of SURF repeatability rate in the ALCC image collection.
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Figure 4.18: Histogram of LN SURF repeatability rate in the ALCC image collection.
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Figure 4.19: Histogram of LSAC SURF repeatability rate in the ALCC image collection.
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Figure 4.20: Box plot of SURF, LN SURF and LSAC SURF repeatability rates in the ALCC image
collection. The median repeatability is represented by the horizontal line drawn in the box. The
lower quartile value is at the bottom of the box, while the upper quartile value is at the top. The
whiskers represent the minimum and the maxim values.
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Figure 4.21: A comparison between the median repeatability rate of SURF and the two proposed
algorithms over the controlled images present in the ALCC collection (light source varying from
yellow to white - i ∈ {110,120,130,140,150,160,170,180,190}).
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Figures 4.22, 4.23 and 4.24, presents the repeatability rates for a color variation from bluish to

white (LCC image collection). An exploratory data analysis reveals a difference between the mean

and the median repeatability rate in both algorithms, Table 4.10, indicating that the observations

may not be well modeled by a normal distribution. This tendency is also verified through the

values of the skewness and kurtosis, which fall out of the two standard error range.

At 0.05 significance level, the Kolmogorov-Smirnov test confirms that the distribution of either

algorithms (p<0.001) are not normally distributed. The box plot presented in the Figure 4.25

depicts a significant shift of the median repeatability rate from SURF to LN SURF and LSAC

SURF. An additional advantage of both proposed algorithms was the decrease of the statistical

dispersion.

The results depicted in Figure 4.26 (α ∈ {0.2,0.3,0.4,0.5,0.6,0.7,0.8,0.9,1.0} in the red and

green color channels) demonstrates that the repeatability rate of SURF algorithm declines sharply.

The tendency to find higher mean repeatability rate for the lower values of α is once again verified

in SURF. The proposed algorithms, on the other hand, demonstrate a much higher and constant

overall mean repeatability rate. The Wilcoxon signed rank test (Table 4.11) indicate that both LN

SURF (Z =−79.887, pUD < 0.001) and LSAC SURF (Z =−79.015, pUD < 0.001) provided a

significant increase in the feature repeatability.

Table 4.10: Descriptives of the color invariance experiment. Variation in the color of the illuminant
from bluish to white - LCC collection.

SURF LN SURF LSAC SURF
Statistic Std Error Statistic Std Error Statistic Std Error

Mean 29.7037 0.30586 91.7943 0.13239 73.0255 0.23540
Median 21.2121 95.8791 77.7778
Variance 841.948 157.733 498.730
Std. Deviation 29.01634 12.55920 22.33225
Skewness 1.181 0.026 -3.266 0.026 -0.865 0.026
Kurtosis 0.480 0.052 16.254 0.052 0.196 0.052

Table 4.11: Wilcoxon signed rank test of the color invariance experiment. Variation in the color
of the illuminant from bluish to white - LCC collection.

LN SURF - SURF LSAC SURF - SURF
N Mean Rank Sum of Ranks N Mean Rank Sum of Ranks

Negative Ranks 558 608.57 339579.50 371 821.80 304887.00
Positive Ranks 8256 4664.26 38508125.50 8234 4459.85 36722428.00
Ties 186 395
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Figure 4.22: Histogram of SURF repeatability rate in the LCC image collection.
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Figure 4.23: Histogram of LN SURF repeatability rate in the LCC image collection.
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Figure 4.24: Histogram of LSAC SURF repeatability rate in the LCC image collection.
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Figure 4.25: Box plot of SURF, LN SURF and LSAC SURF repeatability rates in the LCC image
collection. The median repeatability is represented by the horizontal line drawn in the box. The
lower quartile value is at the bottom of the box, while the upper quartile value is at the top. The
whiskers represent the minimum and the maxim values.
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Figure 4.26: A comparison between the median repeatability rate of SURF and the two proposed
algorithms over the controlled images present in the LCC collection (light source varying from
bluish to white - α ∈ {0.2,0.3,0.4,0.5,0.6,0.7,0.8,0.9,1.0} for the red and green color channels).
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4.6.6 Small Photometric Variation Experiment

Figure 4.27 presents the repeatability rates for a set of real world images with small photometric

variation (Office image collection). An exploratory data analysis reveals a difference between the

mean and the median repeatability rate in both algorithms, Tables 4.12, which indicates that the

observations may not be modeled by a normal distribution. The same tendency, however, is not

verified through the values of the skewness and kurtosis, which fall within the two standard error

range. At 0.05 significance level, the Shapiro-Wilk test indicates that the distribution of either

SURF (p = 0.037) and LN SURF (p = 0.025) can not be modeled as normal distribution, while

LSAC SURF (p = 0.495) can. The box plot presented in the Figure 4.28 depicts a decrease of the

median repeatability rate from from SURF to LN SURF, and a significant increase from SURF

to LSAC SURF. An additional advantage of the LSAC SURF was the decrease of the statistical

dispersion of the observations.

The results demonstrate a high repeatability rate for both SURF and LSAC SURF algorithms,

which was held above 75% in all illumination conditions. LN SURF, on the other hand, demon-

strated to be highly susceptible to image noise, yielding a repeatability rate ranging from 50%

to 70%. Such behavior was not evident in the previous image collections because, when the

controlled images were created, the noise of the reference image was subjected to the same trans-

formations that the rest of the pixels. In real world images like the Office collection, though, the

noise varies not only differently from the rest of the pixels but also in its location. Despite the re-

sults of the EDA and the Shapiro-Wilk test, due to the small number of observations the statistical

analysis was performed with the Wilcoxon signed rank test (Table 4.13). The test indicated that

while LN Surf failed to improve the repeatability rate (Z =−2.549, pUE = 0.004), LSAC SURF

was indeed able to improve feature illumination invariance (Z =−2.380, pUD = 0.008).

Table 4.12: Descriptives of the small photometric variation experiment - Office image collection.

SURF LN SURF LSAC SURF
Statistic Std Error Statistic Std Error Statistic Std Error

Mean 82.7506 2.93849 59.8088 2.94757 90.1660 2.15289
Median 78.1915 57.6101 91.3580
Variance 77.713 78.194 41.715
Std. Deviation 8.81548 8.84272 6.45868
Skewness 0.093 0.717 0.543 0.717 0.173 0.717
Kurtosis -2.095 1.400 1.400 1.481 -1.327 1.400

Table 4.13: Wilcoxon signed rank test - Office collection.

LN SURF - SURF LSAC SURF - SURF
N Mean Rank Sum of Ranks N Mean Rank Sum of Ranks

Negative Ranks 8 5.50 44.00 1 1.00 1.00
Positive Ranks 1 1.00 1.00 8 5.50 44.00
Ties 0 0
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Figure 4.27: A comparison between the median repeatability rate of SURF and the two proposed
algorithms over the real world images present in the Office collection.
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Figure 4.28: Box plot of SURF, LN SURF and LSAC SURF repeatability rates in the Office image
collection. The median repeatability is represented by the horizontal line drawn in the box. The
lower quartile value is at the bottom of the box, while the upper quartile value is at the top. The
whiskers represent the minimum and the maxim values.
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4.6.7 Large Photometric Variation Experiment

Figure 4.29 presents the repeatability rates in the Soccer image collection. An exploratory data

analysis reveals a large difference between the mean and the median repeatability rate in both

algorithms, Table 4.14. A similar tendency is verified through the values of the skewness and

kurtosis, which fall out of the two standard error range.

At 0.05 significance level, the Shapiro-Wilk test confirms that both distributions, SURF (p=0.042)

and LSAC SURF (p=0.005), are not well modeled as normal distribution, while LN SURF (p=0.185)

is. The box plot presented in the Figure 4.30 does not indicate an improvement from SURF to LN

SURF. However, when comparing SURF and LSAC SURF one can note a great shift of the median

repeatability rate. One drawback of both proposed algorithms was the increase of the statistical

dispersion.

The results demonstrate that the repeatability rates of SURF and LN SURF are very low in the

Soccer dataset. LSAC, on the other hand, demonstrates a much higher and constant repeatability

rate. The Wilcoxon signed rank test (Table 4.15) indicate that LN SURF failed to provide an

improvement (Z =−0.941, pUD < 0.189). When compared to LSAC SURF, the test suggests

that there is a significant increase in the feature repeatability (Z =−3.059, pUD < 0.001).

Table 4.14: Descriptives of the large photometric variations experiment - Soccer image collection.

SURF LN SURF LSAC SURF
Statistic Std Error Statistic Std Error Statistic Std Error

Mean 29.5735 1.61725 31.6195 1.86469 75.8602 3.72678
Median 27.7605 30.1630 69.4541
Variance 31.386 41.725 166.667
Std. Deviation 5.60231 6.45947 12.90996
Skewness 1.535 0.637 1.168 0.637 0.864 0.637
Kurtosis 2.819 1.232 1.552 1.232 -1.186 1.232

Table 4.15: Wilcoxon signed rank test of the large photometric variation experiment - Soccer
collection.

LN SURF - SURF LSAC SURF - SURF
N Mean Rank Sum of Ranks N Mean Rank Sum of Ranks

Negative Ranks 4 6.75 27.00 0 0.00 0.00
Positive Ranks 8 6.38 51.00 12 6.50 78.00
Ties 0 0

Figure 4.31 presents the features detected with SURF and LSAC SURF algorithms. To facil-

itate the distinction, hard features were represented by red dots, and soft features represented by

green dots. A visual inspection indicates that several features detected with SURF are located in

saturated pixels. We can also note that several LN SURF features were detected in flat rather than

on blob-like image regions, demonstrating a significant susceptibility to image noise.
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Figure 4.29: A comparison between the median repeatability rate of SURF and the two proposed
algorithms over the real world images present in the Soccer collection.
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Figure 4.30: Box plot of SURF, LN SURF and LSAC SURF repeatability rates in the Soccer
image collection. The median repeatability is represented by the horizontal line drawn in the box.
The lower quartile value is at the bottom of the box, while the upper quartile value is at the top.
The whiskers represent the minimum and the maxim values.
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(a) SURF features of the first image. (b) SURF features of the seventh image.

(c) LN SURF features of the first image. (d) LN SURF features of the seventh image.

(e) LSAC SURF features of the first image. (f) LSAC SURF features of the seventh image.

Figure 4.31: Comparison between the SURF, LN SURF and LSAC SURF features detected in the
first (A, C, E) and the seventh (B, D, F) images of the Soccer collection. Red dots represent hard
features, while green dots represent soft features.
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4.7 Conclusions

In this chapter, the reader was introduced to the related work on color feature detectors and

methodologies of color constancy. We have seen that despite considered one of the most successful

color constant algorithms, Gamut mapping is not a viable option for robotic vision systems since

it is computationally complex and requires an image data set with known light sources. Several

low level color constant algorithms are less complex, faster, and only slightly outperformed by the

gamut mapping, but generally assume that the scene is uniformly illuminated. Since in real world

images the illumination is generally not uniform, this premise is not fully verified. An alternative

is the Local Space Average Color descriptor, which estimates the illuminant locally for each point

of the scene.

Next, the analysis developed in the Section 4.3 provided the theoretical foundations to under-

stand the elements that compromise the illumination invariance in feature detection functions. It

demonstrated that the image derivative is not affected by the diffuse term β (Equation 2.26) when

it is constant over the image (or at least over the image patch in which the filter is being computed).

Therefore, all the three algorithms analyzed presented partial invariance to illumination changes,

provided by the computation of the image derivatives. However, only SIFT demonstrated invari-

ance when subjected to the scalar variation. SIFT invariance is provided by the division of the trace

by the determinant of the Hessian matrix, which cancel the effects of α . Harris corners showed

the biggest variation, proportional to α4 , while SURF an intermediate variation, proportional to

α2.

The proposed LN SURF methodology extended the original SURF feature detector combining

it with the local normalization methodology. Unlike other authors that use color space conversion

to achieve illumination invariance, our method normalize the SURF detection function to provide

invariant responses. The algorithm demonstrated a very high repeatability rate in all the four

controlled image sets tested. In addition, it was able to statistically outperform the original SURF

detector in two of the most challenging scenarios: the LIS and the LCC image collections. The

experiments with the real world image set, though, exposed the main problem of the approach,

its high susceptible to image noise. In both of the two scenarios that the algorithm was tested

(small and large illumination changes), the repeatability rates dropped considerably below the

rates presented by the original SURF algorithm.

Our second approach (LSAC SURF) achieves photometric invariant feature responses using

the Local Space Average Color descriptor as working space to detect illumination invariant SURF

features. The inclusion of this preliminary step adds a small computational load, but demonstrated

to provide a valuable improvement in the feature detection invariance. Similar to the previous

approach, LSAC SURF demonstrated a very high repeatability rate in all the controlled image sets

tested. In addition, the algorithm was able to statistically outperform the original SURF detector in

three out of the four scenarios: LIC, LIS and the LCC image collections. The experimental results

with the real world image sets confirmed the theoretical invariance provided by the proposed

algorithm and also demonstrated its robustness to image noise.
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Chapter 5

Vision-based Localization

Vision-based localization methodologies have demonstrated to be an im-

portant alternative to traditional wheel odometry. Its advantages becomes

even more salient when robots are subjected to uneven terrain, wheel-

slippage, over acceleration, fast turning, interaction with external bod-

ies and interaction with internal forces like the wheelchair castor wheels.

Therefore, a localization methodology that is independent of the wheel-

ground interaction is more adequate for intelligent wheelchairs. Here we

present a visual odometry approach based on inexpensive RGB-D cam-

eras. The proposed algorithm localizes visually salient points, and uses

the depth information of each pixel to estimate the robot translation and

rotation updates at each frame. Experimental results showed an absolute

trajectory error of around 2%, demonstrating the applicability of the local-

ization algorithm in the navigation system of intelligent wheelchairs.

5.1 Introduction

In this chapter, we consider the problem of vision-based localization for mobile robots. In order

to obtain fully autonomous robots, an accurate localization of the robot in the world is an essential

capability. Missions to be achieved by the robot are often expressed in localization terms, such

as "reach that position" or "return to the initial position". The correct execution of the trajecto-

ries provided by the planners relies on the precise knowledge of robot motions. In addition, if

an accurate localization is estimated in real-time, the remaining computational resources can be

allocated to perform other important robotic tasks such as planning, object recognition and visual

perception. Indeed, many robotics applications can benefit from an accurate and fast localization.

Two methodologies have become predominant in vision-based localization systems: one is the in-

cremental trajectory estimation of the Visual Odometry (VO), and the other is the global position

estimation of the Visual Simultaneous Localization and Mapping (VSLAM).
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Matching

Motion Estimation

Image sequence

Feature Detection

Pose Update

Figure 5.1: Typical visual odometry decomposition.

Visual odometry is the process of estimating the change in position and attitude of an agent

(vehicle, human, robot, etc.) using data provided by a single or multiple cameras. The key idea

is to determine the 3D camera motion by solving the transformation between a selection of image

features extracted from consecutive pairs of frames [8, 252]. The methodology has been used

in a wide variety of applications, including robotics, wearable computing, augmented reality and

automotive.

Similar to the classic wheel odometry, VO estimates the agent current pose based on a pre-

viously known position and the accumulation of small fractions of motion. The main advantage

of VO methods, with respect to wheel odometry, is that they are not affected by wheel slippage,

uneven terrain or other harsh conditions. Since VO provides only relative localization, and due to

its inherent accumulation of errors, the methodology may not be implemented as the only localiza-

tion methodology, but instead combined with other global positioning system to periodically reset

the accumulated error. Although the several implementations presented in the literature, visual

odometry can be decomposed into three steps: feature detection, matching and motion estimation

(Figure 5.1).

The feature detection step consists of selecting the interest image features over the camera

frame. This is probably the most time consuming step of the whole algorithm, since each pixel

of the image frame is compared with its neighborhood to check whether it is distinct or not.

Therefore, besides good repeatability, this step may take into account the computer complexity of

the desired feature detector algorithm.

Following, the matching1 step compares features from consecutive frames in order to find,

if possible, their correspondences. Thus, all features detected in the frame Ik are compared to

every feature detected in the frame Ik−1 within a fixed threshold distance. The evaluation of po-

tential matches varies according to the detection algorithm. It can be from simply computing a

normalized cross correlation over a square window2, up to comparing the distance between the

1To establish matches when several unknown changes occur in the image, one must consider features that are as
much invariant as possible with respect to any image transformation.

2In related work, the size of the window usually varies from 3x3 up to 11x11 pixels.
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Ik

(A) (B)

Ik
Ik-1

Ik-1

Figure 5.2: Feature matching: (A) Same feature detected in consecutive images Ik and Ik−1. (B)
Evaluation of potential matches through normalized cross correlation with a 3x3 window.

feature descriptors. Figure 5.2 illustrates the matching and evaluation of a feature point through

normalized cross correlation.

The next step, motion estimation, is the central computation step for every image in a VO

system. It is responsible to compute the geometric relation between the previous frame Ik−1 to the

current frame Ik. There are three methods to estimate the camera motion, which vary according to

dimension that feature correspondences are specified:

• 2D-to-2D: feature correspondences from both the previous and the current frames are speci-

fied in 2D image coordinates. Rotation and translation are directly extracted from the essen-

tial matrix that can be computed from 2D-to-2D feature correspondences using the epipolar

constraint. The minimal case solution involves five 2D-to-2D correspondences.

• 3D-to-3D: feature correspondences from both the previous and the current frames are speci-

fied in 3D. This method require features to be triangulated using a stereo or RGB-D camera

system. The camera motion can be computed by determining the aligning transformation

of the two 3D feature sets. The minimal case solution involves three 3D-to-3D noncollinear

correspondences.

• 3D-to-2D: features from the previous frame are specified in 3D, while from the current

frame are expressed in 2D. the minimal case involves three 3D-to-2D correspondences. This

method minimizes the image reprojection error instead of the 3D-to-3D feature position

error. The minimal case involves three 3D-to-2D correspondences, and is referred in the

literature as perspective from three points (P3P).

For a more detailed review of these methods we may refer to [253] and [211]. Both these

methods result in estimations of the relative rotation and translation from the the previous camera
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position to its current position. Through the concatenation of all these relative movements, the full

trajectory of the camera, and thus of the robot, can be recovered.

Independently if using classic wheel odometry or vision-based odometry, dead reckoning tech-

niques are intrinsically subjected to motion drifts due to its inability to detect revisited locations.

An alternative methodology consists on incrementally build and maintain a map of the environ-

ment by estimating the locations of the robot and of the mapped features. This task of computing

camera motion from measurements of a continuously expanding set of visual features is referred

in the literature as Simultaneous Localization and Mapping (SLAM).

The problem of doing so is that both the feature’s observation and the robot localization are

corrupted by noise. In [210] Lemaire et al. say that "in the absence of an a priori map of the en-

vironment, the robot is facing a kind of "chicken and egg problem": it makes observations on the

environment that are corrupted by noise, from positions which estimates are also corrupted with

noise". In other words, the errors in the robot’s pose have an influence on the estimations of the

observed feature’s locations. Similarly, the use of observations of previously detected features to

locate the robot, provide pose estimations that inherits from both errors. Because stochastic ap-

proaches explicitly handle sensor noise, they have demonstrated to deal with the SLAM problems

in a consistent way. The implementation of a typical feature-based SLAM approach encompasses

the following four basic steps:

• Feature detection. It consists in detecting in the perceived data, features of the environment

that are salient, easily observable and whose relative position to the robot can be estimated.

This process depends on the kind of environment and on the sensors the robot is equipped

with: it is a perception process, that represents the features with a specific data structure.

• Prediction. Estimation of the robot motion between two feature observations. This estimate

can be provided by sensors, by a dynamic model of robot evolution fed with the motion

control inputs, or thanks to simple assumptions, such as a constant velocity model.

• Observation. Estimation of the feature location relatively to the robot pose from which it is

observed.

• Estimation. This is the core of the solution to SLAM: it consists in integrating the various

relative measurements to estimate the robot and landmarks positions in a common global

reference frame. The stochastic approaches incrementally estimate a posterior probability

distribution over the robot and landmarks positions, with all the available relative estimates

up to the current time.

Besides these essential functionalities, one must also consider the map management issues.

To ensure the best position estimates as possible and to avoid high computation time due to the

algorithmic complexity of the estimation process, an active way of selecting and managing the

various landmarks among all the detected ones is desirable. First the robot detects and initialize

new landmarks on the map. In the second step, the robot predicts its motion with the associated
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increase of its position uncertainty. In the third step, the robot observes the previously mapped

landmarks from a new (unknown) position. Finally, the robot corrects of landmark positions and

estimates its localization, with the associated decrease of both robot and map uncertainties.

In a large sense, the main difference between VO and VSLAM is that the later concerns with

obtaining a global, consistent estimate of the robot path. In order to obtain global consistency,

VLSAM needs to keep track of a map of the environment and detect when the robot has returned

to a previously visited location. When a loop closure is detected, this information is used to

reduce the drift in both the map and the estimated trajectory. This makes VLSAM more complex

and computationally more expensive than VO. Visual odometry, on the other hand, concerns with

the local consistency of the trajectory. The path is computed incrementally, pose after pose, and

potentially optimized only over the last n poses.

The choice between VSLAM and VO is a trade-off between precision and performance. While

sometimes the VSLAM globally consistent trajectory is desirable, other times the VO real-time

performance is a requirement. Finally, despite the successful results that have been obtained using

VLSAM systems, most of them have been limited to small indoor workspaces, and only a few

have recently been designed for large-scale areas.

Despite the several implementations proposed in the literate, vision systems can be classified

in stereo and monocular approaches. Stereo approaches encompass the algorithms in which the 3D

state of the observed features can readily be estimated from a single observation. The vast majority

of existing vision-based localization approaches rely on data that directly convey the landmark 3D

state, for example by matching points in the stereoscopic image pair. If the robot is endowed with

a single camera, on the other hand, only the bearings of the features can be readily observed. The

bearings-only problem is an instance of the more general partially observable system, in which

the sensor does not give enough information to compute the full state of a landmark from a single

observation.

Monocular cameras have the ability to measure the bearing of image features, but are not able

to estimate depth. However, given an image sequence of a rigid 3D scene taken from a moving

camera, it is possible to compute both a scene structure and a camera motion up to a scale factor.

To infer the 3D position of each feature, the moving camera may observe it repeatedly each time,

capturing a ray of light from the feature to its optic center. The measured angle between the

captured rays from different viewpoints is the feature’s parallax, and allows feature’s depth to be

estimated. Landmarks Initialization is a delicate task. Extended Kalman Filter requires Gaussian

representations for all the random variables that form the map (the robot pose and all landmark’s

positions). Furthermore, their variances need to be small to be able to properly approximate all the

non-linear functions with their linearized forms. From one bearing measurement, it is not possible

to establish an estimate of the landmark position that satisfies this fundamental rule. Thus, it

is only achieved through successive measurements from different points of view, when enough

angular aperture has been accumulated. This reasoning leads to systems that have to wait for

this angular aperture to be available before initializing the landmark in the SLAM map, which is

known as delayed initialization.
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Up to a recent past stereo rigs were the sensor of choice for obtaining visual and depth informa-

tion. Dense 3D vision sensors were expensive and limited to just a few research groups. This real-

ity changed, though, with the popularization of time-of-flight (e.g. CamBoard nano [254], Swis-

sRanger SR4000 [255]) and RGB-D cameras (e.g. Kinect [256], Xtion [257], CARMINE [258]).

Due to their small size, low power consumption, reliability and speed of the measurement, these

sensors became the primary choice for 3D measuring in indoor robotics. In this context, RGB-D

cameras are specially relevant since mass production made them broadly available at a very low

cost.

Structured light RGB-D cameras are composite devices that consist of an RGB camera, an

IR pattern projector, and an IR camera. The latest two are used in conjunction to triangulate

points in space, working as a depth camera. Through a process called registration each pixel from

the depth image is reprojected into the frame of the color image, so that the depth information

correspondent to each RGB pixel is made available. For more information regarding the principles

of operation of structured light RGB-D cameras and accuracy analysis we may refer to the works

of Smisek et al. [259] and Khoshelham [260].

In this chapter, we describe a methodology to recover the trajectory of robotic devices. The

proposed visual odometry algorithm makes use of affordable RGB-D cameras to provide motion

estimations, and avoid the typical problems caused by the wheel-ground interaction that are en-

countered in the traditional wheel odometry. Through experimental analysis, we demonstrate that

our RGB-D odometry can provide consistent localization over real world conditions.

The outline of the chapter is the following. Section 5.2 presents some related works in the

area of visual odometry and visual simultaneous localization and mapping. Section 5.3 addresses

the motion estimation algorithm proposed in this thesis. Section 5.4 describes the methodology

used to evaluate the performance of the egomotion algorithm, as well as the results obtained from

the estimation of a real world trajectory. Finally, the summary and conclusions of this chapter are

presented in SectionSection 5.5.

5.2 Literature Review

The basic idea of estimating mobile robot’s motion using on-board cameras can be traced back

to 1980, when Moravec [261] presented his PhD thesis. In his work, the author describes a

correspondence-based approach designed to track distinctive features over pairs of frames and

build a 3D world model. The central idea of his algorithm was to match features detected in the

recently acquired images with those from the world model, and so find their relative position to

the robot pose. Later, Matthies and Shafer described a system that evolved from Moravec’s work.

In [7], they proposed the use of a three-dimensional Gaussian distribution, instead of relying on

scalar models, to deal with error modeling in triangulation. According to their work, 3D Gaussians

could reduce the variance in the robot position estimates.

Following Matthies work with some minor variations, stereo visual odometry is presented as

an alternative for localization in the slippery rock surface and steep slopes present in mars terrain.
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In [262], VO was applied during the operation of rovers in the mars planet. Due to computational

constrains, the algorithm demanded 2-3 min to estimate each step of the rover motion. It reduced

the use of visual odometry just for complex environments, like steep slopes and in soils propitious

to wheel dragging. Despite of few instances in which estimation did not converge (i.e. due to

too large motion or lack of features in the image), VO was able to provide the rover’s motion

estimate in more than 95% of the time. Among the several benefits provided by visual odometry

the authors cite the vehicle safety (achieved by having the rover over the planned drives), the

improved accuracy in new and mixed soil terrains (and so a greater number of science observation),

and the reduction in the time needed to make targets reachable by the robot’s instruments. Another

work involving exploration rovers was presented by Helmick et al. [263]. Here, visual odometry

is used to continuously compensate the wheel slippage of a Mars rover. At the same time the rover

estimates its motion measuring the wheel rates (vehicle kinematics), through visual odometry and

using an on-board Inertial Measurement Unit (IMU). Then visual odometry and the IMU estimates

are merged through a Kalman filter, providing a motion estimate which is independent of the

vehicle’s interaction with the environment. Finally, the motion estimate from the Kalman filter

is compared with the motion estimate from the vehicle kinematics to determine if any significant

slippage has occurred. Thus, in case no slippage has occurred the kinematic estimate contribute

to the Kalman filter estimate, otherwise, an "slip vector" is computed to compensate the rover

trajectory.

Milella et al. [264] claim that a reduction of false matches can significantly improve the visual

odometry accuracy. Therefore, they propose a 3 step match rejection solution based on the inte-

gration of nearest-neighbor-ratio and mutual consistency check with the iterative reckoning of 3D

Euclidean transformation to remove outliers from the sample. Interest points in sequence images

are compared through the Euclidean distance to the closest and second-closest neighbors – if the

distance to the closest neighbor is significantly closer, then the match is accepted. Later, pairing

processes are applied for both current and previous frames, and matches accepted only when they

are mutually the preferred mate. Finally, an iterative process computes the rotation and translation

matrix, computes the error of each match and selects (for refinement) those under a threshold.

For Olson et al. [265, 266], despite of presenting an accurate solution to estimate motion in

short runs, the incremental nature of visual odometry algorithms expose it to the accumulation of

errors over long distances. In his work, Olson describes several mechanisms to improve stereo

ego-motion estimative over long distance navigations. Besides the techniques for increasing the

robustness of feature selection, outlier removal and tracking, the author has demonstrated that even

robust systems tend to accumulate errors. According to his research, the positioning errors tend to

grow with the square root of the distance traveled, as well as with the integral of the orientation

error - implying in a super-linear contribution that grows at O(d
3
2 ). With this in mind, he proposes

the use of absolute orientation sensors (accelerometers, compass, and IMUs) to provide periodic

updates to the orientation estimate, eliminating the super-linear error growth. Similarly, Levin and

Szeliski [267] sustain that complementary sources of information (containing global positioning

information) are needed to compensate VO inaccuracies. For this reason, she proposed a novel
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approach that matches up visual data with a hand-drawn map of the environment to correct global

pose estimations. In addition, the algorithm concerns about path crossing detection – in which

path-crossing points are used to constrain the possible matches between the visual odometry and

the map, improving the quality of the pose estimations. In this paper, Howard [12] proposes a

frame-to-frame algorithm for estimating a stereo camera’s motion. Comparing to previous works,

the main distinction of his research occurs in the algorithm for detecting inliers. After features

are detected, the algorithm check its consistency using the assumption that a pair of any two

features shall present the same distance (measured through 3D world coordinates) in the current

frame f (i) and in the previous frame f (i− 1). Thus, authors claim that the algorithm can cope

with frames containing even 90%, which would severely compromise the results of other inliers

detection algorithms – and so the VO estimates. However, after his results, Howard support that

due to the limitations of pure visual odometry even the most minimal robot should have some

form of proprioceptive sensing, and so, their algorithm is intended to extend instead of replace

these sensors.

Besides those methodologies using stereo cameras, researches using monocular cameras have

also presented promising results. For instance, Nistér et al. [268, 269] dealt with a stereo head,

but have also presented a full structure from motion (SFM) algorithm to estimate ego-motion

with a single camera. First, the algorithm detects interesting points in each frame using Harris

corners detector. Then feature points are matched between pairs of sequential frames. After

that, features are tracked over a certain number of frames, and relative poses estimated using the

5-point algorithm and preemptive random sample consensus (RANSAC). Finally, the observed

feature tracks are triangulated into 3D points using the first and the last observations on each

track. Making use of a learning methodology, Royer et al. [8] presents a different approach for

outdoor robot navigation using only monocular vision. In his work, firstly the robot makes use of

a learning phase - in which it is manually driven to record a video sequence of the predefined path

(video reference). Later, from the video reference, a set of key frames are detected, and the camera

motion computed. Then, a set of interest points are reconstructed in 3D, serving as landmarks for

the localization process. Finalized the learning process, the robot can perform the same path,

acquiring new images, detecting interest points on it and correlating them with the previous 3D

reconstruction.

Another approaches based on the monocular perspective propose solutions for the motion

estimation using omnidirectional cameras. In [270], Corke et al. proposed two alternatives for

computing the monocular visual odometry of a planetary rover. In the first approach, they used

optical flow computation with planar motion assumption, while in the second they computed an

unconstrained SFM. Their results have demonstrated that the optical flow method is more robust to

estimate the vehicle velocity, while the SFM provides better accuracy (with larger computational

cost). Scaramuzza and Siegwart [271] also have chosen to deal with catadioptric cameras to com-

pute real-time ego-motion. The main innovation of his work consisted in the application of two

different trackers for the vehicle motion estimation. The first tracker was based on the coplanar

correlation between two different views of the same plane (homography-based), and is employed
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to update the magnitude of the translation. The second tracker used an appearance-based approach

(known as visual compass) to provide high-resolution estimates of the vehicle’s rotation. Accord-

ing to his algorithm, every omnidirectional image is unwrapped into cylindrical panoramas and

compared with the previous image. A column-wise shift of the best match between successive

images is used to directly compute the rotation angle. His methodology can be summarized into

five steps: acquisition of consecutive frames, extraction and matching of SIFT features, reck-

oning of the rotation angle through the appearance-based methodology, rejection of the outliers

(through RANSAC), and finally estimation of the camera motion. Later, Scaramuzza et al. [216]

exploits the planar motion and the nonholonomic constraints of the Ackerman steering geometry

of automotive vehicles. These constraints reduce the vehicle’s degrees of freedom to only two:

rotation and radius of curvature. Thus, only one feature correspondence is necessary to compute

the epipolar geometry, simplifying the motion reckoning and increasing its robustness in scenes

in few structures. Similar to Scaramuzza, Civera et al. [272] also proposes a solution for visual

odometry that requires just one matching for computing structure from motion. However, while in

Scaramuzza’s extra information comes from the application of restrictive motion models, in [272]

the extra information comes from the probability distribution estimated by the EKF. Actually, as

features are kept alive just while inside the camera’s field of view, they are not re-localized the

uncertainty of the camera pose computed by EKF estimators would always grow with respect to

world reference frame. For this reason, the authors have used a sensor-centered EKF estimator,

which represents features locations and camera position in a local reference frame.

One of the first works using vision as input for SLAM approaches is the work of Davidson

[273], later published in [274]. This paper describes one of the first applications of real-time

robot localization within a SLAM framework to use a stereo head as input. Davidson support that

without building and maintaining a map of the environment (features that could be re-detected are

treated as new) a progressive error accumulates proportionally to the distance traveled. Thus, a

SLAM approach is used to propagate first-order approximations of probability density functions,

representing uncertain estimates of the robot, the features and the relation between these estimates.

Over the image, features are detected using the Shi and Tomasi variation of the Harris Corner de-

tector. Then, regions where features are most likely to lie are computed and matches searched

within these regions using normalized sum-of-squared-differences. Finally, robot motion is mea-

sured and the map managed in order to keep only a sparse set of reliable and distinct features.

The previous work of Davison evolved to a more comprehensive approach. In [13], and more

recently in [9], he proposes the use of EKF for solving the real-time motion estimation of a single

camera. To deal with the lack of metric scale of the monocular cameras, Davison assume that the

camera starts at rest, in front of a known object (with known dimensions and position). Then, the

algorithm predicts the camera movement and searches, in a likely region, for features already in

the SLAM map. Once feature depth can not be estimated from a single measure, for the feature

initialization in the SLAM map Davison proposes a particle filter approach - creating a set of depth

hypothesis, which is refined up to convergence. Despite handling with depth initialization, this ap-

proach did not solve entirely the problem. Actually, it established a significant limitation once the
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algorithm is able to deal just with features located in a small predefined range (from 0.5 to 5.0m)

- limiting its application to room-scale scenes. Further, such "delayed" of initialization meant that

observations of features were not used to update the camera pose estimate until their conversion

into fully initialized features. Another problem of this approach consists in the use of the template

matching technique for feature correspondence. Such technique, which uses filter predictions to

solve matching ambiguity, has demonstrated a lack of stability in situations like camera shake,

occlusion and erratic motion. Similarly, as features are viewed from wider angles, surrounding

regions deviate from the templates and matching becomes unreliable, again resulting in failure.

Most of the monocular SLAM approaches rely on prior knowledge of the robot position to

determine which features of the map select for matching with those from the current view and to

reduce search area of each feature. Nevertheless, events like rapid camera motions, occlusions

and motion blur, present in real applications, violate such assumptions and often cause tracking

to fail, loss of camera pose, and even map corruption. Therefore, Williams et al. [10] presented

a robust re-localization method which operates in parallel to Davison’s MonoSLAM system [9].

His approach intends to increase the robustness against camera shakes and occlusions relying on

the image-to-landmark matches yielded by randomized trees to recover the camera pose. Despite

randomized trees breaks down the problem into several classes, the cost regarding class training

and storage is an obstacle when dealing with large maps with hundreds of features.

Jensfelt et al. [275] has presented an approach for online mapping that combines Harris-

Laplace and SIFT descriptor for feature detection. However, due to the delayed output of the

tracking module current estimations of the robots position have to be predicted from the last pose

of the SLAM module using odometry or dead-reckoning sensors. With robot moving further,

more features are accumulated. Thus, to avoid the heavy one-to-all matching strategy, the author

adopts a kd-tree to construct SIFT features descriptors. Nevertheless, with continuously added fea-

ture descriptors, kd-tree becomes larger and unbalanced, leading to a rapid decrease in the search

efficiency. In the work presented by Lameire et al. [276], the main innovation concerns with the

initialization of new features. According to his approach, the initial probability density of a feature

is approximated by a weighted sum of Gaussians. Subsequent observations are used to compute

the probability of each Gaussian and prune bad hypothesis (those with low likehood). Then, when

only a single Gaussian remains, a new check verifies the feature consistency, which can definitely

accept or reject the feature. Later, Lemaire at al. [210] compare the advantages of bearing-only

and stereo approaches in a traditional SLAM framework. As in [276], authors support the use of

delayed feature initialization in order to avoid useless computations of unstable features. Finally,

the comparison between monocular and stereo remarks that bearing-only SLAM has demonstrated

to be more sensitive to the prediction input, and so, incurring more errors in the position estimates.

A severe drawback of several monocular approaches regards to the fact that they can only cope

with features located near the camera. In bearing-only approaches, the feature’s depth is initialized

measuring the angular difference between the light rays from the feature to the camera’s optic

center in different viewpoints (feature parallax). However, the depth of features with low parallax

(features distant to the camera) is very difficult to be measured, so these features are usually
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rejected. According to Civera et al. [272], while features with high uncertain depths do not provide

much information about the camera translation, they are very useful reference for the camera

rotation. Thus, they propose a novel parameterization for point features represented by a 6D state

vector that encode uncertainty up to infinity with one Gaussian. In addition, with the inverse depth

parameterization (IDP), features can be immediately used to improve camera estimations through

an immediate initialization process. However, the use of IDP is more computational consuming,

because instead of the three dimensions of a Euclidean representation each point is represented by

the 6D state vector.

Current visual SLAM systems based on EKF framework suffers from a severe limitation con-

cerning the size of the environment they can self-localize. Actually, real-time is mostly achieved

in maps with up to 100 features. Thus, Paz et al. [277] proposes to divide a large environment into

a set of several small maps. This way, their algorithm (called Divide and Conquer – DεC) is able

to compute the covariance of probabilistic maps from large environments in a reduced amount

of time, improving consistency of the resulting estimate. However, this approach requires local

maps to be statistically independent, and consequently, it is not possible to share important infor-

mation, such as the camera velocity, or information about features currently being tracked. Later,

in [11] Paz et al. proposed an alternative for improving the DεC approach. Rather than dealing

with statistically independent maps, this novel approach extent the previous research working with

conditionally independent maps. As a result, worth information is shared between maps, without

increasing computational costs or loosing accuracy.

A further novelty of this work consists in combining of stereo and monocular approaches.

In doing so, it is possible to extract the best of each paradigm. The stereo approach is able to

provide depth information for features at a close range, and thus compute the robot translation. In

addition, with stereo it is possible to observe the true environment scale, eliminating the intrinsic

scale unobservability of monocular system – scale does not need to be initialized using external

sensors, nor through a priori knowledge as the size of a known object or the initial camera speed.

However, monocular approaches are able to deal with points much more distant to the camera

(even points at the infinity). Distant features act as bearing references, providing better estimation

of the camera rotation. They are also very important in outdoor environments, which features are

dismissed by stereo heads due to their inability to estimate depth with reasonable accuracy. To take

advantage of both types of information, their system combines in the map the 3D points provided

by the stereo par (defined by Cartesian coordinates) with Inverse Depth (ID) points [272] provided

by the bearing-only algorithm.

In [278], Chekhlov et al. discuss about the problems regarding feature descriptors used for mo-

tion estimation. They observe that despite minimizing computational efforts, template-matching

techniques are affected by the size of search region (which are effective only for small search

regions) and by the viewing angle (large variations infer matching problems). Although warp-

ing template techniques propose a solution for improving the robustness over large viewing angle

variations, it suffers from a widespread mismatch in situations of sudden erratic motion and cam-

era occlusion. For this reason, the authors have proposed a novel methodology to operate over a
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large range of views by using SIFT-like feature descriptors. Estimates of camera motion (using

unscented Kalman filter) are computed to guess the scale and to speed up the computation of the

features. Also interested in alternatives for detecting interest feature, Tomono [279] proposes a

SLAM approach based on the Iterative Closest point (ICP) algorithm and edge detection to es-

timate the motion of stereo pair. The author discusses the stability of corner-like approaches in

non-structured scenes. According to his research, corner-like algorithms can frequently detect an

insufficient amount of features for robust localization in man-made environments, and so, other

alternatives like the lines and edges may be explored. The camera motion is estimated in two steps.

In the first, motion is estimated with visual odometry. Then, a key frame adjustment is employed

to re-estimate motion and reduce the accumulated errors. Despite the dense map resulted from

this approach, the huge amount of edge points detected on each frame (up to 10,000 according to

the author) demands special care with processing efficiency. Another related to edges is the low

distinguishability of edge points, and the large number of multiple matching candidates.

Since 2010, with the advent of the low cost RGB-D cameras, a new set of localization method-

ologies have been proposed in the literature. Henry et al. [280] presented one of the first works

using RGB-D sensors for localization and mapping. Their system used both sparse visual features

and dense point clouds for frame-to-frame alignment and loop closure detection. First it extracts

SIFT features and, through RANSAC, estimate the image transformation. This transformation is

than used in the initialization of the ICP dense estimation. The biggest limitation of the system,

high computational cost, is evidenced in their experiments. With a reported computational time

close to 1 second per frame, the approach in the presented configuration is not able to provide

real-time pose estimations.

Endres et al. [281] presented the VSLAM approach referred in the literature as RGB-D SLAM.

The algorithm uses a SIFT to extract visual key points from the color images. Next, the algorithm

uses FLANN to match features between consecutive frames, and the depth images to localize them

in the 3D space. Finally, the algorithm estimate the transformation between the two frames with

RANSAC, and optimize the pose graph using non-linear optimization. With the elimination of the

ICP step of Henry’s approach and the use of a parallelized GPU implementation of SIFT, Endres

could significantly reduce in the computational time. Experimental results using TUM RGB-D

dataset [282] demonstrated that, on average, the frame processing time was of 0.35s.

Paton and Kosecka [283] suggested an RGB-D localization system (referred to as Adaptive

RGB-D) that selects the motion estimation method according to the estimation reliability. The

algorithm is mainly based on the detection and matching of sparse SIFT features. Though, when

the RANSAC motion estimations fail or present a high residual error, it takes advantage of the

dense point clouds provided by the RGB-D depth images to refine the motion estimation with ICP.

Experimental results using TUM RGB-D dataset demonstrated that, when compared to RGB-D

SLAM, the algorithm provided inferior results in datasets with many loops and rich in visual

features (reported to be due to its lack of a global optimization), and better results in datasets with

limited matching features and absence of loops.

Recently, Kerl et al. [284] presented an approach that minimizes the photometric error, and
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Figure 5.3: Decomposition of the proposed RGB-D odometry.

estimates the camera motion using non-linear minimization. A great advantage of eliminating the

sparse feature detection and matching step is the reduction in the computational cost, allowing the

algorithm to run in real-time (30 Hz) on a single CPU core of a Intel i5 (3.46GHz). Experiments

performed on the TUM RGB-D dataset reported a reduction in the root mean square error when

compared to the RGB-D SLAM approach.

5.3 RGB-D Based Motion Estimation

Our motion estimation methodology relies on the data provided by RGB-D sensors to estimate the

robot motion and localization. A general flow of the proposed algorithm is presented in Figure 5.3.

The algorithm starts with extraction and description of SURF image features. SURF was chosen

not only due to its invariance to changes in scale, rotation and point of view, but specially because

its computational efficiency allows real-time implementations.

Features from the current and previous scenes are then evaluated in order to find the appropri-

ate correspondences. Our implementation uses a brute force matcher, in a process that compares

all the features from the current set with every feature from the previous one. The matcher can,

therefore, find the pairs of features that contain the closest descriptors. In addition, the algorithm

performs a cross check in order to return only consistent pairs. In other words, it only returns pairs

of descriptor (i, j) whose i− th element is the nearest descriptor of j− th if the j− th element is

also the nearest descriptor of i− th.

After the matching step, we project the 2D feature locations from the image to 3D using the

pixel depth information. The RGB-D sensors have a factory calibration stored on-board, based

on a high level polynomial warping function. The OpenNI [285] driver uses this calibration to

compensate radial and tangential lens distortion, and for registering the depth images (taken by
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the IR camera) to the RGB images. The conversion from the 2D images to 3D point clouds are

defined as follows:

Z = D(v,u) (5.1)

X =
(u− cx)Z

f x
(5.2)

Y =
(v− cy)Z

f y
(5.3)

where D(v,u) is the pixel value of the depth image, (v,u) the 2D image coordinate, (X ,Y,Z) the

3D image coordinate, cx and cy the camera optical center, and f x and f y the camera focal length.

In theory, the transformation of the camera pose between two frames could be computed in

closed form from the 3D point correspondences [286]. However, due to noise in the 2D feature

localization and mismatch in feature pairs it is not possible to assure a perfect reliability with re-

spect to repeatability and false positives. Noise in the estimation of the features 3D location also

contributes to make the robust estimation of transformations highly non-trivial. Inconsistencies

between depth data and the RGB image are a common issue due to a lack of synchronization

between the shutters of the infrared and the color camera. Another important cause of inconsis-

tencies rely on the interpolation at depth jumps, which occur since visually salient points often lie

at object borders.

In order to deal with such noise data and remove the outliers we make use of the Random

Sample Consensus (RANSAC) algorithm. After matching the feature descriptors of two frames,

we randomly select three matched feature pairs (minimal number of points from which a rigid

transformation in SE(3) can be computed). Outliers are than avoided by refusing sample sets for

which the pairwise Euclidean distances do not match. When the samples pass this test, they are

used to estimate the camera rigid transformation. This transformation is applied to all matched

features, and the features within a fixed threshold distance are counted as inliers. The choice

of the threshold is related with the random error of depth measurements. In our experiments,

we considered a threshold of 4cm since it is the standard deviation at the maximum range of

the sensor [260]. These steps are iterated and the transformation with most inliers is kept. The

number of iterations, 35 RANSAC hypothesis in our experiments, was defined according to the

Equation (2.52), considering the minimal set of data points s = 3, a confidence level p = 0.99, and

an inlier ratio ω = 50%.

Next, all the inliers are used to compute a refined transformation. For that, we relied on the

Umeyama’s methodology [286] to estimate the transformation parameters between the pairs of 3D

points (Yi and Xi). The algorithm is based on the analysis of the covariance matrix, and estimates

the rotation R and translation T that minimizes the mean square error e2 of the input point sets:

e2(R, t) =
1
n

n

∑
i=1
||Yi− (R Xi +T )||2 (5.4)
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Algorithm 3 RGB-D based motion estimation
Definitions:

rgbImg: 3 layer matrix containing the red, green and blue values of image pixels
depthImg: matrix containing the depth information of every pixel of the RGB image
pose : vector containing the camera’s x, y and z position in the world reference frame
orient : vector containing the camera’s rotation quaternions in the world reference frame

1: function RGBODOMETRY(pose, orient, prev2Dkpts, prev3Dkpts, rgbImg, depthImg)

2: 2Dkpts← LSACSur f (rgbImg) . Detection of visual salient points

3: matches← bruteForceMatch(2Dkpts, prev2Dkpts)
4: 3Dkpts← convert2D23D(matches,2Dkpts,depthImg)

5: inliers← RANSAC(matches,3Dkpts, prev3Dkpts)
6: trans←Umeyama(inliers) . Estimate the camera’s relative translation and rotation

7: pose← updatePose(trans)
8: orient← updateOrient(trans)

return pose, orient, 2Dkpts, 3Dkpts

9: end function

where i = 1,2, ...,n, n is the number of point pairs. Finally, from the rotation matrix and the

translation vector, the camera pose X(k) = [x,y,z]T can be updated at each time step k:

X(k) = R X(k−1)+T ; (5.5)

The pseudo-code for the RGB-D based motion estimation algorithm is detailed in the Algo-

rithm 3. First the algorithm receives the previous camera’s position and orientation, previous 2D

and 3D key points, as well as the current RGB and depth images (line 1). From the RGB image, it

extracts 2D salient key points with LSAC SURF (line 2). These key point are than matched with

the key points from the previous frame by brute force (line 3). The 3D position of the key points

that were successfully matched are estimated using their 2D location and the depth image (line

4). Following, we use RANSAC to find the 3D inliers (line 5) and Umeyama’s methodology to

provide a refined estimation of the camera’s rotation and translation (line 6). The final step is to

update the camera’s pose and orientation (lines 7 and 8). The algorithm is called every time a new

RGB-D image pair is available.

5.4 Experiments and Results

In this section, we characterize the performance of our RGB-D odometry algorithm on a large

image dataset. In addition, we investigate the influence of different choices of feature detectors
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over the accuracy of trajectory estimated by our odometry algorithm.

5.4.1 Dataset

The RGB-D odometry approach proposed in this Chapter has been tested on a dataset of real world

images captured by an RGB-D camera. The TUM RGB-D dataset [282] contain sequences of pre-

registered color and depth images along with the ground truth trajectory of the camera. Both

images were captured by a Microsoft Kinect at 30 Hz with a full resolution of 640x480 pixels.

The ground truth data was collected from a high-accuracy motion-capture system at 100 Hz, and

contains the translation and orientation of the optical center of the color camera with respect to a

fixed coordinate system. In addition, the dataset provides the intrinsic parameters of the color and

infrared cameras (focal length and optical center), a correction factor for the depth values, and a

tool to evaluate the accuracy of an estimated trajectory.

For evaluation, we chose the FR1 xyz and FR2 xyz sequences because they contain a typical

real world indoor environment. The main characteristics of each sequence are summarized in the

Table 5.1. As can be noted from this table, the average camera velocities range from 1.7 deg/s to

8.9 deg/s and from 0.05 m/s to 0.24 m/s.

Table 5.1: Characteristics of the TUM RGB-D dataset sequences.

Sequence Length Duration Avg. Ang. Speed Avg. Trans. Speed No Frames
FR1 xyz 7.112m 30.00s 8.920o/s 0.244m/s 796
FR2 xyz 7.029m 122.74s 1.716o/s 0.058m/s 3665

5.4.2 Evaluation Metrics

The evaluation regarding the quality of the estimated trajectory was performed using two common

evaluation metrics: relative pose error (RPE) and absolute trajectory error (ATE) [282]. The rela-

tive pose error measures the local accuracy of the trajectory. It computes the error in the relative

motion between subsequent pairs of frames, making it well-suited for estimating the drift of visual

odometry systems. The end result of the RPE evaluation method is the root mean squared error

(RMSE) of the relative pose errors summed over the entire trajectory. Results of this evaluation

method can be separated into translational and rotational errors, which are respectively defined as:

RPETrans =

√
1
n

n

∑
i=0
||Ti− T̂i||2 (5.6)

RPERot =

√
1
n

n

∑
i=0
||Ri− R̂i||2 (5.7)

where n is the number of camera poses, Ti and Ri are the camera relatives translation and orien-

tation at time step i, and T̂i and R̂i are the camera truth translation and orientation given by the
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Figure 5.4: Sample RGB (upper rows) and depth (bottom rows) images from the FR1 xyz se-
quence.

Figure 5.5: Sample RGB (upper rows) and depth (bottom rows) images from the FR2 xyz se-
quence.
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ground truth. Note that, since rotational errors also manifest themselves in wrong translations,

some researchers find it sufficient to evaluate RPE translational component.

The absolute trajectory error (ATE), on the other hand, measures the difference between poses

given by the estimated trajectory and the ground truth. Since ATE evaluates the global consistency

of the estimated trajectory, it specially suited for measuring the performance of visual SLAM

systems. The end result of the ATE evaluation method is the root mean squared error (RMSE)

of the global pose errors summed over the entire trajectory. The absolute trajectory error can be

computed as:

AT ETrans =

√
1
n

n

∑
i=0
||Pi− P̂i||2 (5.8)

where n is the number of camera poses, Pi is the estimated camera pose at time step i, and P̂i

is the camera truth pose given by the ground truth. The literature report that these two metrics

are strongly correlated. Nevertheless, from a practical perspective, ATE method has an intuitive

visualization which facilitates visual inspection [282].

5.4.3 Experiment Results

In the first round of experiments, we evaluated the accuracy of our system on all sequences us-

ing SURF feature extraction. All results were obtained on a single core of a PC with Intel i7

2630(2.00GHz) and 4GB RAM. The ATE and RPE results from the FR1 xyz and FR2 xyz se-

quences are summarized in the Table 5.2. On these sequences, we obtain respectively 6.3cm and

10.7cm RMSE error. The mean runtime per frame were of 0.217s and 0.220s. Further, we ana-

lyzed if the feature detector proposed in the previous Chapter could improve the accuracy of the

estimated trajectory. For that, we repeat the same experiment (round two) using LSAC SURF to

extract visual salient points.

The ATE and RPE results from the FR1 xyz and FR2 xyz sequences are summarized in the

Table 5.3. With LSAC SURF we improved the RMSE error in 1.8cm and 3.5cm, respectively. Yet,

our approach did not compromise the algorithm computational cost. The mean runtime per frame

with LSAC SURF were respectively 0.222s and 0.224s, only 2.3% and 1.9% slower than with

the original SURF algorithm. Figures 5.6 and 5.7 show the translational error for each frame of

the FR1 xyz sequence for the trajectories estimated with SURF and LSAC SURF respectively. In

Figure 5.8, the trajectory is split into separate plots for the x, y and z component with a graph for

the ground truth position (red), the position estimated with SURF(blue) and the position estimated

with LSAC SURF (green). From that, it is clear that the algorithm is able to recover from bad

motion estimations. This is only possible because the sequence contains several loops, and thus,

the camera truth position is able to eventually meet the estimated position.

Figure 5.9 shows the translational error for the trajectory estimated with SURF on the FR2

xyz sequence. We can note that estimations close to frames 250 and 1000 presented a significant

translational error (0.085m and 0.06m). A closer inspection indicated that such errors occurred due
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Figure 5.6: Translational relative pose error of the estimated trajectory in FR1 xyz sequence with
the original SURF detector.
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Figure 5.7: Translational relative pose error of the estimated trajectory in FR1 xyz sequence with
the LSAC SURF detector.
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Figure 5.8: Estimated vs. ground truth trajectories of the FR1 xyz sequence. The red line repre-
sents the truth position of the camera, while the blue and green represent respectively the trajectory
estimated with SURF and LSAC SURF detectors.
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Table 5.2: Evaluation of the proposed visual odometry approach. On the two test sequences, the
system feature detection was performed with the original SURF detector.

Sequence
Absolute trajectory error Relative pose error Total

Trans. RMSE Trans. RMSE Rot. RMSE Runtime
FR1 xyz 0.063166m 0.007434m 1.046866o 173.184s
FR2 xyz 0.107393m 0.005533m 1.337283o 806.078s

Table 5.3: Evaluation of the proposed visual odometry approach. On the two test sequences, the
system feature detection was performed with the LSAC SURF detector.

Sequence
Absolute trajectory error Relative pose error Total

Trans. RMSE Trans. RMSE Rot. RMSE Runtime
FR1 xyz 0.044879m 0.005581m 1.003705o 177.167s
FR2 xyz 0.072615m 0.004454m 1.068909o 821.978s

to noise in the estimation of the 3D points, leading to a very low number of inliers and consequently

a bad estimation of the rigid transformation. Figure 5.10, on the other hand, shows the translational

error for the trajectory estimated with LSAC SURF. As in the previous sequence, Figure 5.11 split

the camera trajectory into separate plots for the x, y and z component. The red line represents

the truth position of the camera, while the blue and green represent respectively the trajectory

estimated with SURF and LSAC SURF detectors. Similar to the previous observation, the visual

odometry algorithm is able to recover from bad motions estimations due to the loops of the camera

trajectory.

5.5 Conclusions

In this Chapter we described the most relevant methodologies in the area of feature-based vi-

sual localization. Visual odometry systems have the advantage of coping with hundreds (or even

thousands) of features in each frame. Furthermore, in trajectories in which the robot continually

explores new regions without returning, visual odometry can obtain as much precision as typical

SLAM systems, but with a significant reduction in computational cost. However, just like the

conventional dead-reckoning, VO is affected by the accumulation of errors over the time, and thus

eventual drift in is inevitable. In addition, recovering a forward motion still presents a challenge

to existing VO algorithms, partly due to the limited lifetime of feature tracks 3.

Visual SLAM systems, on the other hand, allow repeatable long-term localization through

naturally occurring landmarks. Using cameras with a wide angular range ensures that persistent

features re-detected after lengthy neglect can also be re-matched, even if the area is passed through

along a different trajectory or in a different direction. This is key to reduce the effect of motion

drift: in VSLAM the drift depends on the distance from the origin (in the world reference frame)

3The most informative features are at the boundaries of an image. Thus, they quickly move out of the camera’s FOV.
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Figure 5.9: Translational relative pose error of the estimated trajectory in FR2 xyz sequence with
the SURF detector.
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Figure 5.10: Translational relative pose error of the estimated trajectory in FR2 xyz sequence with
the LSAC SURF detector.
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Figure 5.11: Estimated vs. ground truth trajectories of the FR2 xyz sequence. The red line repre-
sents the truth position of the camera, while the blue and green represent respectively the trajectory
estimated with SURF and LSAC SURF detectors.
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and not on the total distance traveled by the robot. Furthermore, VSLAM is able to derive on-the-

fly probabilistic estimation of the camera and features, and benefit from this to improve processing

efficiency.

We have also seen that, when dealing with vision-based localization systems, comparisons

between stereo versus monocular approaches seems inevitable. A significant advantage of the

stereo scheme is that it can operate correctly even with slow and no camera motion. This is

also an indication of its greater stability, since many of the difficulties in monocular ego-motion

estimation are caused by small motions. Stereo vision gives more information, because the overall

scale of the motion is immediately known through the baseline of the stereo head. It makes easier

to integrate visual odometry with information from other sources and also to preserve the correct

scale of motion past breakdowns in the motion estimations. In the case of monocular approaches,

an important limiting factor is that scale is not observable. Thus, scale must be initialized using

some a priori knowledge about such as the size of a known object visible at the start or the initial

speed of the camera. However, in large environments, unless scale information is injected on the

system periodically, the scale of the map can suffer from a slow but continuous drift. Conversely,

monocular approaches can cope with features on any depth, once even features at infinity can

improve the orientation estimates. In addition, monocular cameras are less restrictive and easier

to integrate in robots and portable devices.

Further, we proposed a odometry system based only on visual information. Our system relies

on the color and depth data provided by inexpensive RGB-D cameras to compute the robot relative

motion between pairs of frames and recover its full trajectory. Our algorithm starts by localizing

visually salient points on the gray scale image. After matching these features over consecutive im-

ages, the algorithm uses the depth information to estimate their 3D position on the space. Through

a probabilistic approach (RANSAC), it removes features whose 3D were corrupted by noise and

computes the robot translation and rotation that minimizes the mean square error.

A set of experiments with a real-world image dataset were performed to evaluate the proposed

approach. The results of such tests resulted in an absolute trajectory error of around 2% for 3D

trajectories of 7m. In face of that, we believe on the applicability of the localization algorithm

in the navigation system of intelligent wheelchairs (and mobile robots in general). Further we

investigated the influence of the feature detector in the motion estimation. The accuracy of the

estimated trajectory was superior for LSAC SURF in the two sequences tested, indicating that

the hypothesis that the wider illumination invariance of LSAC SURF could improve the motion

estimation is indeed verified. It is interesting to salient that these results were achieved on a dataset

with low illumination challenges, and thus LSAC SURF is likely to provide even better results

in other scenarios. We also believe that LSAC SURF tend be even more relevant to VSLAM

systems. Since in VSLAM features may be revisited and re-matched after long periods, it is likely

that variations in the scene illumination are more significant. However, as previously discussed,

odometry is inherently affected by the accumulation of errors an so it is not expected to work as the

only localization methodology. Instead, it designed to integrate a wider pose estimation approach

that fuses the visual odometry data with other sources of information such as wheel odometry,
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global navigation systems, inertial navigation systems, etc.



158 Vision-based Localization



Chapter 6

Conclusions

"All truths are easy to understand once they are discovered; the point is to

discover them."

– Galileo Galilei

This chapter summarizes the contributions of this thesis, its limitation and future directions

of research. For wheelchairs to be able to work for people with special mobility requirements,

they need to be able to acquire knowledge through perception. In other words they need to collect

sensor measurements from which they extract meaningful information. This thesis covered some

of the essential components of a intelligent wheelchair system, adapting some methodologies de-

veloped for traditional mobile robotics to assistive devices:

• hardware framework: how to provide sensing and processing capabilities to regular powered

wheelchair preserving the wheelchair ergonomics and its normal operation.

• obstacle avoidance: how to prevent collisions without full navigation autonomy (sharing the

wheelchair control with the user).

• feature extraction and matching: how to extract and robustly match distinctive features that

are suitable for robot motion estimations.

• RGB-D odometry: how to recover the trajectory of a camera/wheelchair using RGB-D cam-

eras as the only input.

6.1 Main Contributions

The main contributions of this thesis are concentrated in two areas, respectively assistive robotics

and localization. In the area of assistive robotics, an initial literature review revealed that the user
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welfare (normal wheelchair operation, ergonomics, accessibility, etc) is not considered in the de-

sign of most intelligent wheelchair projects. Since providing assistance to impaired people should

be always the major objective to any intelligent wheelchair project, we designed our solution with

a user-centered perspective. This work contributes to the conceptualization and development of a

modular platform for the development of intelligent wheelchairs that mitigates the visual and er-

gonomic impacts caused by sensors and other computational devices. Our approach also provide

compatibility with the hardware of multiple models and manufactures of powered wheelchairs,

facilitating the conversion of regular powered wheelchair into intelligent wheelchairs.

Another work described here, the assessment of robotic simulators, provided an important

contribution for the implementation of the IntellWheels simulator. Based on this study, a very

realistic model of the wheelchair prototype was created. Throughout the project, the simulated

environment was used to test IntellWheels flexible multimodal interface not only in able-bodied

individuals, but also in patients with cerebral palsy. The experiments also allowed concluding that

the simulator was an important tool to test and train the users to drive the intelligent wheelchair.

The literature reports that, in some obstacle avoidance methodologies, users preferred the man-

ual control even when the shared control effectively reduced their number of collisions. A possible

explanation to this observation is that some obstacle avoidance algorithms present a behavior that

diverges from the user expectations. In this sense, higher acceptance rates are important, other-

wise users tend to abandon the shared control methodology and increase the risk of collision. This

was a concern when designing the shared control algorithm proposed in this thesis. Our algo-

rithm demonstrated that it is able not only to reduce the number of collisions, but also to improve

the user perception of assistance. An additional advantage concerns with the algorithm constant

and low computational complexity, which allows real-time operation in embedded systems with

limited computational capabilities.

Regarding the robot localization, this work focused on the extension of some methodologies

used in visual-based localization systems. First, we can point the LN and the LSAC extensions

of the SURF detector. Our contribution consisted in the combination of SURF feature detection

algorithm with other computer vision techniques (respectively the local normalization and the local

space average color) in order to improve its photometric invariance properties. In this context, the

LSAC SURF algorithm showed to be particularly interesting due to its significant increase in

feature illumination invariance and robustness to image noise. In addition, our RGB-D odometry

demonstrated to be a viable option to deal with motion estimation tasks.

6.2 Limitations

The main limitation of this work is probably related to the inner nature of odometry, since the

assumption that the robot path can be recovered through the integration of small consecutive esti-

mations is not fully verified in practice. The noise present in real world sensors inevitably lead to

noisy estimations which, in turn, leads to motion drifts and global inconsistencies. Nevertheless,
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the proposed RGB-D odometry algorithm can provide relevant pose estimations that can be fused

with other global localization methodologies, or serve as base for a future visual SLAM approach.

Another limitation is related to our feature-based motion estimation approach. For the algo-

rithm to work effectively, it should be able to extract a sufficient number of visual features. In

this context illumination plays an important role. Saturation and interference with IR projected

pattern lead to a severe reduction in the number of features detected, which consequently affects

the robustness of the estimation. The scene must be predominantly static, with enough texture to

allow apparent motion to be extracted. Furthermore, consecutive frames should be captured by

ensuring that they have sufficient scene overlap, to allow proper matching. Finally, only those fea-

tures located within the depth range of the RGB-D camera can have their 3D position estimated.

For some frames, many detected visual features are out of range of the depth sensor, so those

features have no associated 3D points and do not participate in the motion estimation procedure.

Also, when the majority of the features lie in a small region of the image, they do not provide very

strong constraints on the motion.

6.3 Final Remarks

Throughout this thesis we presented a series of methodologies and experiments to allow us test

two hypotheses regarding the development of intelligent intelligent wheelchairs. The first hypoth-

esis concerned with the design of intelligent wheelchairs, and stated that "It is possible to design

an intelligent wheelchair to assist severely handicapped individuals using low cost off-the-shelf

devices without interfering with the wheelchair normal operation, and with reduced visual im-

pact". The second hypothesis, on the other hand, concerned with the use of vision algorithms as

means to improve the wheelchair localization, and stated that "The use and extension of current

vision-based methodologies can provide robust localization for intelligent wheelchairs".

Revisiting the conclusions of Chapter 3 it is possible to verify the first hypothesis. The in-

telligent wheelchair prototype was indeed only designed with off-the-shelf devices, which were

physically disposed to avoid any interference with the wheelchair ergonomics. In order to increase

the access to this technology, we kept the cost of the hardware framework at 2.000,00e, which

is equivalent to the cost of ordinary powered wheelchairs. In addition, results of a public survey

suggested that our design can mitigate the visual impact of the additional devices assembled in the

wheelchair.

Despite the encouraging results presented in the Chapters 4 and 5, there is not sufficient evi-

dence to completely verify the second hypothesis. The vision-based localization approach demon-

strated to provide good localization estimations, but further improvements are still required to

compute motion estimations purely based on computer vision. Indeed, the results and discussions

presented in the previous Chapters suggest that a truly robust localization approach can only be

achieved through the combination of multiple sensors and methodologies.
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6.4 Recommendations For Future Work

Inspired by the contributions made in this thesis, a number of interesting open issues are worth

investigating. In the following we suggest several recommendations for future work, filtering them

by application domain:

Intelligent Wheelchair: The placement of an RGB-D camera have been contemplated in the

IntellWheels hardware architecture and also during the development of the sensor bars. Despite

the specification of how to position and fix such sensors in the wheelchair, the manufacture of

such mounting was not included in the scope of this thesis and should be seen as future work.

Our design places the sensor in the front part of the wheelchair, facing forward. In order to keep

the access to the wheelchair seat clear, ant thus better preserve the wheelchair ergonomics, the

sensor should be rotated 90 degrees from its standard horizontal operating position. It may be

fixed on the wheelchair sensor bar through a special tip, which should replaces one of the current

rounded tip that holds two ultrasound sensors. In addition the obstacle avoidance proposed is very

sensor-depended, and does not overcome by itself the intrinsic sonar shortcomings. Therefore,

further improvements should include some probabilistic analysis to increase robustness and reduce

measure oscillations. Future work could also encompass new experiments in order to evaluate

the proposed obstacle avoidance algorithm not only with able-bodied individuals, but also with

patients with cerebral palsy, Parkinson and Alzheimer, as well as other possible end users.

Feature detection algorithm: The algorithm proposed for feature detection was designed to in-

crease the feature repeatability without adding too much computational complexity to the original

SURF implementation. A further development to reduce the algorithm computational time could

include a code optimization and subdivision of tasks in multiple simultaneous threads. In the ex-

perimental section, a deeper analysis could include a comparison of the proposed method with

other feature detection illumination invariant methods.

Localization Approach: One of the motivations of this research was to tackle the localization

problems faced by intelligent wheelchairs. For this reason we proposed a vision-based odometry

methodology, and tested it on a RGB-D dataset of a real-world scenario. In this sense, a follow-

ing work would consist of integrating the proposed localization methodology in the IntellWheels

perception agent, allowing the wheelchair to use the motion estimations for navigation purposes.

Despite these encouraging results, our system has several shortcomings that deserve future ef-

fort. The mean runtime per frame, currently around 200ms, could certainly be speeded up by an

efficient implementation based on modern GPU hardware. In addition, further research should

be done to develop/implement a bundle adjustment algorithm to improve the estimated pose and

assure a local consistency of the estimated path. Another promising research line would be to

develop a RGB-D SLAM system based on the current RGB-D odometry approach. This way the

wheelchair could identify revisited places and assure a global consistency to the estimated trajec-

tory. Finally, another interesting avenue for research is the extraction of object representations
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from the rich information contained in dense 3D maps.

All these perspectives for future development are interesting in several areas of engineering,

specially in the fields of the computer vision and robotics. The development of these future works

could lead to more robust assistive robotic devices, and thus, improve the potential of people with

motor disabilities.
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IntellWheels: Intelligent Wheelchair with Flexible Multimodal interface

Motivation

Powered wheelchairs can provide a means of locomotion for people with mobility impairments.

However, a broad variety of health conditions limit or even completely prevent several individuals

from properly controlling ordinary powered wheelchairs. With the current reduction in the costs

of computational systems, sensors and actuators, they start to be integrated in the wheelchairs.

By endowing capacities of perception, decision and action, this new concept of wheelchairs can

provide a greater assistance, independence and safety to the user.

Presentation

The goal of this study is to compare safety and the perception of safety of the wheelchair user

in two distinct situations: in the regular driving of a powered wheelchair, and when aided by an

autonomous obstacle avoidance methodology.

About the Questionnaire

This questionnaire is composed of qualitative questions were the respondents are invited to express

their atitudes, opinions and satisfaction regarding the methodologies developed, thus there are no

right or wrong answers. The evaluation of the answers will be governed according to the principles

of ethical conduct,guaranteeing the right to privacy of the respondent as well as the anonymity and

confidentiality of information provided
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IntellWheels: Intelligent Wheelchair with Flexible Multimodal interface

Questions

Instructions: Mark the most appropriate alternative for each of the questions below.

1. Please, inform your age in years:

2. Please select your gender: o M o F

3. I frequently drive powered wheelchairs.

Strongly Disagree Somewhat Disagree Neither Agree nor Disagree Somewhat Agree Strongly Agree
o 1 o 2 o 3 o 4 o 5

4. In comparison to ordinary powered wheelchairs, the extra hardware assembled in the
IntellWheels prototype caused a big visual impact.

Strongly Disagree Somewhat Disagree Neither Agree nor Disagree Somewhat Agree Strongly Agree
o 1 o 2 o 3 o 4 o 5

Comments:

Subject ID: Date:
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IntellWheels: Intelligent Wheelchair with Flexible Multimodal interface

Manual Control Experiment

Instructions: Mark the most appropriate alternative for each of the questions below.

Questions
Strongly Somewhat Neither agree Somewhat Strongly
disagree disagree nor disagree Agree agree

I feel comfortable driving
the wheelchair.

o 1 o 2 o 3 o 4 o 5

I feel that I am in control of
the wheelchair.

o 1 o 2 o 3 o 4 o 5

The wheelchair behaves as
expected.

o 1 o 2 o 3 o 4 o 5

It is ease to drive the
wheelchair in cluttered envi-
ronments.

o 1 o 2 o 3 o 4 o 5

Driving the wheelchair re-
quires little attention.

o 1 o 2 o 3 o 4 o 5

The wheelchair presents the
same behaviour in both real
and simulated environments.

o 1 o 2 o 3 o 4 o 5

Comments:

Subject ID: Date: No collisions:
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IntellWheels: Intelligent Wheelchair with Flexible Multimodal interface

Shared Control Experiment

Instructions: Mark the most appropriate alternative for each of the questions below.

Questions
Strongly Somewhat Neither agree Somewhat Strongly
disagree disagree nor disagree Agree agree

I feel comfortable driving
the wheelchair.

o 1 o 2 o 3 o 4 o 5

I feel that I am in control of
the wheelchair.

o 1 o 2 o 3 o 4 o 5

The wheelchair behaves as
expected.

o 1 o 2 o 3 o 4 o 5

It is ease to drive the
wheelchair in cluttered envi-
ronments.

o 1 o 2 o 3 o 4 o 5

Driving the wheelchair re-
quires little attention.

o 1 o 2 o 3 o 4 o 5

The wheelchair presents the
same behaviour in both real
and simulated environments.

o 1 o 2 o 3 o 4 o 5

I believe that the wheelchair
helped me in the navigation
process.

o 1 o 2 o 3 o 4 o 5

Comments:

Subject ID: Date: No collisions:
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IntellWheels: Intelligent Wheelchair with Flexible Multimodal interface

Motivation

A broad variety of health conditions limit or even completely prevent several individuals with

mobility impairments from properly controlling ordinary powered wheelchairs. With the current

reduction in the costs of computational systems, sensors and actuators, they start to be integrated

in the wheelchairs. By endowing capacities of perception, decision and action, this new concept

of intelligent wheelchairs can provide a greater assistance, independence and safety to the user.

Nevertheless, the addition of cameras, laser scanners, computer and displays can deeply modify

the visual appearance, comfort and ergonomics of ordinary wheelchairs. Often, such situation

creates physical and psychological barriers that tends to alienate potential intelligent wheelchair

users.

Presentation

The goal of this study is to evaluate the visual impact of the IntellWheels prototype comparing its

current appearance with the original powered wheelchair it was based on, and with the intelligent

wheelchair prototypes of other research projects.

About the Questionnaire

This questionnaire is composed of qualitative questions were the respondents are invited to express

their opinions regarding the visual appearance of intelligent wheelchair prototypes, thus there are

no right or wrong answers. The evaluation of the answers will be governed according to the

principles of ethical conduct,guaranteeing the right to privacy of the respondent as well as the

anonymity and confidentiality of information provided.
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IntellWheels: Intelligent Wheelchair with Flexible Multimodal interface

1. Please, inform your age in years:

2. Please select your gender: o M o F

3. Please, indicate your highest level of education:

o I do not know o 2 Cycle (5o - 6o years) o Bachelors degree

o No schooling o 3 Cycle (7o - 9o years) o Masters degree

o 1 Cycle (1o - 4o years) o High school o Doctorates degree

4. Please indicate the number of years you are a wheelchair user (If applicable):

Comments:

Subject ID: Date:
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IntellWheels: Intelligent Wheelchair with Flexible Multimodal interface

D) University of Texas
Wheelchair

E) IntellWheels
Prototype

F) MIT
Prototype

B) EISLAB
Prototype

H) Sharioto
Prototype

A) SmartChair
Prototype

G) Robochair
Prototype

C) University of Shiga 
Prototype

I) SENA
Prototype

J) FRIEND II
Prototype

Figure B.1: Intelligent wheelchair prototypes

5. Based on the pictures of intelligent wheelchair prototypes (Fig. B.1), please indicate (for
each prototype) your level of agreement with the following statement:

The addition of sensors and other hardware devices had visual/ergonomic impact on the wheelchair

(e.g. changed the normal appearance/usage of the Wheelchair)

Strongly Somewhat Neither Agree Somewhat Strongly
Disagree Disagree nor Disagree Agree Agree

A)SmartChair o 1 o 2 o 3 o 4 o 5
B)EISLAB o 1 o 2 o 3 o 4 o 5
C)University of Shiga o 1 o 2 o 3 o 4 o 5
D)University of Texas o 1 o 2 o 3 o 4 o 5
E)IntellWheels o 1 o 2 o 3 o 4 o 5
F)MIT o 1 o 2 o 3 o 4 o 5
G)Robochair o 1 o 2 o 3 o 4 o 5
H)Sharioto o 1 o 2 o 3 o 4 o 5
I)SENA o 1 o 2 o 3 o 4 o 5
J)FRIEND II o 1 o 2 o 3 o 4 o 5
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IntellWheels: Intelligent Wheelchair with Flexible Multimodal interface

Figure B.2: Original powered wheelchair

I) Display

II) Sensor bar

III) Other hardware

III) Computer 

Figure B.3: Intellwheels prototype

6. For each statement below, please indicate your level of agreement:

In comparison with the original powered wheelchair (Fig. B.2), global visual changes of the

IntellWheels prototype (Fig. B.3) are small.

Strongly Disagree Somewhat Disagree Neither Agree nor Disagree Somewhat Agree Strongly Agree
o 1 o 2 o 3 o 4 o 5

In comparison with the original powered wheelchair (Figure B.2), visual changes introduced

by the display (Fig. B.3.I) are small.

Strongly Disagree Somewhat Disagree Neither Agree nor Disagree Somewhat Agree Strongly Agree
o 1 o 2 o 3 o 4 o 5

In comparison with the original powered wheelchair (Figure B.2), visual changes introduced

by the sensor bars (Fig. B.3.II) are small.

Strongly Disagree Somewhat Disagree Neither Agree nor Disagree Somewhat Agree Strongly Agree
o 1 o 2 o 3 o 4 o 5

In comparison with the original powered wheelchair (Figure B.2), visual changes introduced

by the PC and other hardware (Fig. B.3.III) are small.

Strongly Disagree Somewhat Disagree Neither Agree nor Disagree Somewhat Agree Strongly Agree
o 1 o 2 o 3 o 4 o 5
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