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Abstract. Most of the original image feature detectors are not able to
cope with large photometric variations, and their extensions that should
improve detection eventually increase the computational cost and intro-
duce more noise to the system. Here we extend the original SURF al-
gorithm increasing its invariance to illumination changes. Our approach
uses the local space average color descriptor as working space to de-
tect invariant features. A theoretical analysis demonstrates the impact
of distinct photometric variations on the response of blob-like features
detected with the SURF algorithm. Experimental results demonstrate
the effectiveness of the approach in several illumination conditions in-
cluding the presence of two or more distinct light sources, variations in
color, in offset and scale.
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1 Introduction

Many computer vision tasks depend heavily on extraction and matching of corre-
sponding points (features) over consecutive images. Applications of feature based
algorithms include, but are not limited to, image classification, image segmenta-
tion, object recognition and camera calibration. In robotics, motion estimation
methodologies like visual ociteetry and visual SLAM have been able to com-
plement traditional navigation sensors (like global navigation satellite systems,
encoders and inertial measurement units), offering smooth (30Hz) and locally
highly accurate localization information.

In general, this problem is tackled by searching for image regions whose
low-level characteristics (i.e size, shape, luminance, color, texture, binocular dis-
parity) significantly differs from the background. As important as the feature
distinctiveness, is its ability to be repeatedly identified in consecutive images.
However, image RGB values are significantly influenced by variations in scene il-
luminant. Such variations introduce undesirable effects and negatively affect the
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performance of computer vision methods. For this reason, one of the most fun-
damental tasks of visual systems is to distinguish the changes due to underlying
imaged surfaces from those changes due to the effects of the scene illumina-
tion. In order to increase the probability of image features to be re-detected
in subsequent images, it is extremely important for them to be robust to noise
and invariant with regard to geometric (changes in scale, translation, rotation,
affine/projective transformation) and photometric variations (illumination di-
rection, intensity, color and highlights).

The Speeded Up Robust Feature (SURF) [1] is a widely used feature detector
in robotics motion estimation due to its low computation time. The algorithm
provides features that are invariant to image scale and rotation, but only partially
invariant to changes in viewpoint and illumination. In this paper the problem of
SURF illumination invariance is addressed.

The remainder of the paper is organized as follows. The second section reports
the related works under this topic. The third section briefly presents the theory
regarding image formation and color invariance. In the fourth section we perform
a mathematical analysis over the SURF feature detection function to identify
its weakness regarding photometric variations. In the fifth section we present
an approach to improve SURF illumination invariance by exploiting the local
space average color descriptor as working space for feature detection. Next it is
presented the experimental work and results comparing the repeatability rate
of the proposed approach with the original SURF implementation. Finally some
conclusions and directions for future work conclude the paper.

2 Related Work

Originally, most of the feature detectors and descriptors were designed to cope
only with the image luminance. Later, in order to take advantage of illumi-
nation invariance properties of other color spaces, some researchers proposed
extensions for the original algorithms. In [2], Ancuti and Bekaert proposed an
extension to the SIFT descriptor (SIFT-CCH) that combines the SIFT approach
with the color co-occurrence histograms (CCH) computed from the Nrgb color
space. Their algorithm performs the same as SIFT in the detection step, but
introduces one dimension to the descriptor. Thus, features are described by a
two element vector that combines the SIFT and the CCH descriptor vectors.
The main problem of such an approach is the increase in the computational
effort during the feature matching due to the extra 128 elements added to the
descriptor vector. The color-SURF proposed by Fan et al.[3] was maybe the
first to approach suggesting the use of colors in SURF descriptors. Through a
methodology similar to the SIFT-CCH, the authors propose the addition of a
new dimension to the descriptor vector. This extra information corresponds to
the color histogram computed from the YUV color space, and adds a 64-element
vector for each feature descriptor. For this reason, just like in the SIFT-CCH,
the extra elements in the descriptor vector increase the computational effort
necessary during the matching step.
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In [4], Abdel-Hakim and Farag uses the invariant property H (related to hue)
of the Gaussian color model as working space. Thus, instead of using gray gradi-
ents to track SIFT features, they use the gradients of the color invariant to detect
and describe features. Although the authors used the H invariant instead of the C
invariant, the approach is called CSIFT in a reference to the introduction of color
in the SIFT operator. [5], also use invariants derived from the Gaussian color
model to reduce the photometric effects in SIFT descriptions. They compare the
individual performance of four invariants with the original SIFT approach, with
the CSIFT approach [4] and with the HSV-SIFT approach [6]. Their evaluation
suggests that the C-invariant, which can be intuitively seen as the normalized op-
ponent color space, outperforms the original SIFT description and all the other
approaches. In reference to the results of the C-invariant, the combination of
this invariant with the SIFT operator is called C-SIFT. Sande et al. [7] presents
an evaluation of the different approaches that attempt to provide photometric
invariance to SIFT like descriptors.

3 Image Theory

The geometric distribution of the body reflection is sometimes assumed to reflect
light evenly in all directions. Therefore, the luminance in such isotropic surfaces,
also known as Lambertian surfaces, is the same regardless of the viewing angle.
Assuming that a scene contain surfaces which exhibits Lambertian reflectance
properties, its resulting image I can be modelled in terms of the surface re-
flectance S(λ, xobj) and the light spectral power distribution E(λ, xobj) falling
onto an infinitesimal small patch on the sensor array.

I(xi) =

∫
E(λ, xobj)S(λ, xobj)p(λ)dλ . (1)

Where p(λ) is the camera spectral sensitivity of wavelength λ, xobj is the
object location in the world coordinate frame and xi is its location in the image
coordinate frame. Although each sensor responds to a range of wavelengths, the
sensor is often assumed to respond to the light of a single wavelength. Thus, one
can approximate the sensor response characteristics by Dirac’s delta functions.
Through the former assumption, it is possible to simplify the Equation (1) and
express the intensity Ik(xi) measured by the sensor k ∈ {R,G,B} in the
position xi as:

Ik(xi) = Ek(xobj)Sk(xobj) . (2)

3.1 Diagonal Model

One of the most difficult problems when working with colors is that the object’s
apparent color varies unpredictably with variations in the intensity and temper-
ature of the light source. A well-known example occur in outdoor environments
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with daylight variations, the color shift between sunny and cloudy days is simply
not well modeled as Gaussian noise in RGB [8].

One of the most used models to describe those kind of variations is the
von-Kries model, or Diagonal Model (DM), which corresponds to a diagonal
transformation of the color space. According to Diagonal model, it is possible to
map an observed image Io taken under an unknown illuminant to a correspond-
ing image Ic under a canonical illuminant through a proper transformation in
order to render images color constant. Finlayson et al. [9] note that the DM
model present shortcomings when mapping near saturated colors, and propose
an extension that includes the ”diffuse” light term by adding an offset. Such
model is known as the Diagonal-Offset Model, and is given by:Rc

Gc

Bc

 =

a 0 0
0 b 0
0 0 c

Ro

Go

Bo

+

o1o2
o3

 . (3)

Using the Diagonal-offset model, illumination variations can be classified
according to the values of the scalar and offset into five distinct categories [7].
In the light intensity change (LIC), the three RGB components of a given image
varies equally by a constant factor, such that a = b = c and o1 = o2 = o3 = 0.
Hence, when a function is invariant to light intensity changes, it is scale-invariant
with respect to light intensity. In the light intensity shift (LIS), a constant shift
affects equally all the RGB channels of a given image, such that a = b = c = 1 and
o1 = o2 = o3 6= 0. The light intensity change and shift (LICS) is a combination
of the two above mentioned categories, and also affect all three RGB channels
equally, in such a way that a = b = c and o1 = o2 = o3 6= 0. Thus, when a
function is invariant to light intensity changes and to light intensity shift, it is
known as scale-invariant and shift-invariant with respect to light intensity. The
two remaining categories do not assume that RGB channels are equally affected
by variations in the light source. The light color change (LCC) corresponds to
the Diagonal model, and assumes that a 6= b 6= c and o1 = o2 = o3 = 0. Since
images are able to vary differently in each channel, this category can model
changes in the illuminant color temperature and light scattering. The last, light
color change and shift (LCCS), corresponds to the full Diagonal-offset model and
takes into consideration independent scales a 6= b 6= c and offsets o1 6= o2 6= o3 for
each image channel.

3.2 Color Constancy

The ability to perceive color as constant under changing conditions of illumina-
tion is known as color constancy, and is a natural ability of human observers. The
problem of computing a color constant descriptor based only on data measured
by the retinal receptors is actually underdetermined, as both E(λ,Xobj) and
pk(λ) are unknown. Therefore, one need to impose some assumptions regard-
ing the imaging conditions. The most simple and general approaches to color
constancy (i.e. White Patch [10] and the Gray World [11]) make use of a single
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statistic of the scene to estimate the illuminant, which is assumed to be uniform
in the region of interest. Approaches like Gammut Mapping, on the other hand,
make use of assumptions of the surface reflectance properties of the objects.

A more recent method is based on the Local Space Average color (LSAC),
which can be defined as a computational model of how the human visual system
performs averaging of image pixels [12]. The model proposed by Ebner makes
two important assumptions. The first is that the essential processing required to
compute a color constant descriptor in human observers is located in the visual
area V4 of the extrastriate visual cortex [13]. The second is that gap junctions
behave like resistors. Thus, Ebner models the gap junctions between neurons
in V4 as a resistive grid, which can be used to compute Local Space Average
color, and then color constant descriptors. Each neuron of this resistive grid
computes the local space average color by iterating update equations indefinitely
for all three bands. According to Ebner, the iterative computation of Local Space
Average Color produces results which are similar to the convolution of the input
image with a Gaussian kernel.

The Local Space Average Color alone is just a biologically inspired theory
that tries to explain how the brain averages image pixels. However, when com-
bined with the Gray World hypothesis, LSAC can provide means to derive color
invariant descriptors. The advantage of Ebner’s work is that if we consider the
Gray World assumption in a local perspective, it is possible to estimate the color
of the illuminant at each image pixel. For a more detailed theoretical formulation
we may refer to [12]. Given the local space average color ak, one can derive a
local color invariant descriptor Ok through:

Ok(x, y) =
Ik(x, y)

2ak(x, y)
≈
Sk(x, y)Ek(x, y)

Ek(x, y)
≈ Sk(x, y) . (4)

4 Analysis of Photometric Variations in SURF

In order to understand the effects of the light source variation in SURF responses
consider an observed single channel image Io with pixel intensity Io(x, y) at a
given point X = (x, y). Through the central difference method it is possible to
express the second derivatives of Io(x, y) as:

∂2Io(x, y)

∂x2
= Io(x+ 1, y)− 2Io(x, y) + Io(x− 1, y) . (5)

Now, consider that Io has a corresponding image Iu, taken under unknown
illuminant. Assuming the Diagonal-offset model these two images are related
by a linear transformation determined by a scalar constant α and an offset
β. Therefore, the pixel intensity Iu(x, y) of the image Iu at the same point
X = (x, y) can be modeled as:

Iu(x, y) = αIo(x, y) + β . (6)
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Thus, it is possible to conclude that the second derivatives of Iu(x, y) with
respect to x is:

∂2Iu(x, y)

∂x2
= α

∂2Io(x, y)

∂x2
. (7)

The same applies to the second derivatives with respect to y and XY. When
computing the derivatives, the diffuse term β is canceled out, causing no impact
on the final result. However, by varying the illumination with a scalar α the
second derivatives vary proportionally with the scalar. Feature localization is
a three-step process that starts disregarding points in which blob-response is
lower than a fixed threshold value. Thus, if the detector responses vary with
the illumination, a given feature that is detected in a bright image may not be
detected in a corresponding image with lower illumination levels. SURF detector
response Ru(x, y) of a given pixel Iu(x, y) is given by the determinant of the
Hessian matrix:

Ru(x, y) =
∂2Iu(x, y)

∂x2
∂2Iu(x, y)

∂y2
−
(
∂2Iu(x, y)

∂xy

)2

. (8)

Replacing (7) into (8), the filter response Ru can be expressed in terms of
the SURF response Ro(x, y) of the Io:

Ru(x, y) = α
∂2Io(x, y)

∂x2
α
∂2Io(x, y)

∂y2
−
(
α
∂2Io(x, y)

∂xy

)2

= α2Ro . (9)

The degree of the scalar (α2) in (9) provides the theoretical explanation to
why even small variations in the scene illuminant cause significant variations in
the magnitude of the detector response.

5 The Proposed LSAC SURF Approach

Among color constancy methods, gamut mapping is referred in literature as one
of the most successful algorithms [14]. It has demonstrated good results in dif-
ferent datasets of several works. The method is though computationally quite
complex. Its implementation requires the computation two convex hulls, which
is a difficult problem when using finite precision arithmetic. Another drawback
is that the algorithm requires an image data set with known light sources to
estimate the canonical gamut (learning phase) that will be used to compute the
transformation matrix, and thus estimate the illuminant (testing phase). In prac-
tice, such methodology is not viable for robotic vision systems since robots are
not constrained to one specific scenario, but subjected to multiple and dynamic
environments.

Low level color constant algorithms, on the other hand, are less complex,
faster and only slightly outperformed by the gamut mapping [15]. These char-
acteristics make them perfect candidates for improving robotic vision systems.
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One limitation of the Gray World assumption is that it is only valid in images
with sufficient amount of color variations. Only when the variations in color are
random and independent, the average value of the R, G, and B components of
the image would converge to a common gray value. This assumption is, however,
held very well in several real world scenarios, where it is usually true that there
are a lot of different color variations.

Another limitation of most color constancy algorithms is that they are mod-
eled with the assumption that the scene is uniformly illuminated. Since in prac-
tice multiple illuminants are present in the scene, the illumination is not uniform,
and thus the premise is not fully verified. For instance, some daylight may be
falling through a window while an artificial illuminant may be switched on inside
the room. In fact, that may be the main advantage of the descriptors derived
from the Local Space Average color methodology. Since LSAC estimates the il-
luminant locally for each point of the scene, its descriptors are better prepared
to deliver color constancy in real world images.

Most color invariant feature detectors proposed combines the original detec-
tor with some sort of color space mapping. Our approach to achieve photometric
invariant feature responses (LSAC SURF) consists on taking advantage of the
invariant properties of the LSAC descriptor, using it as working space to perform
SURF feature extraction. The inclusion of this pre-processing step adds a small
computational load, but may provide a significant increase in feature detection
robustness.

The size of the window that LSAC is computed plays a important role in the
robustness of the feature detection. Empirical observation demonstrated that
feature repeatability tends to perform better when LSAC is computed over small
neighborhoods. In fact, due to the multiple illumination sources the values of
α and β tends to vary significantly in distant image pixels, which makes the
assumption that Ek(x, y) ≈ 2ak(x, y) to be valid only for a small regions.

When a pixel reaches saturation, it does not present the same variation as its
neighbors, causing non linear variations in the response of the feature detector
and decreasing the probability to be correctly matched in subsequent images.
Therefore, features which pixel intensities are close to saturation are not good
candidates for matching. However, such features can not simply be ignored since
under certain illumination variations their pixel intensity can move away from
saturation, and make them good candidates for matching in subsequent images.
For this reason, each detected feature is classified into hard and soft features
according to their pixel intensities. If the pixel intensity of a distinct image
region is lower than an upper threshold and higher than a lower threshold the
feature is classified as hard feature, on the contrary, the feature is classified as
soft feature. The choice of the proper upper and lower threshold values might
be determined according to the expected variation in the scene illumination.

Since hard features are more likely to be found in subsequent images, we
can reduce the search space and match only the current hard features with
the subsequent set of features. In this context, soft features are used only to
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support matching of previous hard features, while hard features are used in the
computation of sensitive visual tasks.

6 Results

This section presents the experimental validation of the proposed method. First,
the influence of several illumination conditions on the performance of the pro-
posed method is studied using controlled indoor images, Fig. 1. Next, the pro-
posed method is applied on a data set of real images, Fig. 3. In the following
experiments the optimum parameters of SURF [1] were assigned to both al-
gorithms. The LSAC was approximated with a Gaussian kernel of size 15x15,
with standard deviation σ = 4. The lower and upper thresholds used for feature
classification into hard and soft were set to 20 and 220 respectively.

6.1 Performance Measurement

To evaluate the performance of our approach we adopted the repeatability cri-
terion similar to the proposed by Schmid et al. [16]. The repeatability rate eval-
uates the ratio between the number of point-to-point correspondences that can
be established for detected points in all images of the same scene C(I1, ..., In)
and the total number of features detected in the current image mi. Therefore,
the higher the repeatability, the more likely features are to be matched and the
better the matching results tend to be.

Ri =
C(I1, ..., In)

mi
. (10)

Where i denotes the image under analysis and n the number of images of
the same scene. The repeatability rate of our approach was compared with the
repeatability rate of the SURF algorithm implemented in the OpenCV library.

6.2 Controlled Image Set

First experiments are performed on images available in the Amsterdam Li-
brary of Object Images (ALOI) [17]. ALOI provides several image collections,
like the light color change (ALCC) collection. ALCC is a collection of im-
ages in which the color of the illumination source was varied from yellow to
white, according to the voltage v0 of the lamps (where v0 = 12i/255 volts and
i ∈ {110, 120, 130, 140, 150, 160, 170, 180, 190, 210, 230}). Since among the ALOI
collections only the ALCC collection have a direct correspondence to the il-
lumination variations modeled through the Diagonal offset model, three new
controlled collections were artificially created: LIC, LIS, and LCC collections.

To create the controlled collections we selected all images from the ALCC col-
lection with color temperature of 2750k, and performed the proper transforma-
tions. Thus, all collections contain a set of 9.000 images of 1.000 objects designed
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to evaluate the effects of specific variations in the scene illuminant. The LIS col-
lection was created by shifting all the color channels equally by an offset β ∈
{−20,−15,−10,−5, 0, 5, 10, 15, 20}. The LIC collection was created scaling all
the RGB channels equally by a factor α ∈ {1/2.0, 1/1.5, 1/1.2, 1/1.1, 1, 1.1, 1.2,
1.5, 2.0}. Finally, the LCC collection, which mimics the effect of a light variation
from bluish to white, was created by scaling both the Red and Green channels
by a factor α ∈ {0.2, 0.3, 0.4, 0.5, 0.6, 0.7, 0.8, 0.9, 1.0}, while keeping α ∈ {1.0}
for the Blue channel.

The repeatability results in the LIS collection, Fig. 2a, confirm the theoretical
analysis and demonstrate that offset variations indeed do not affect the perfor-
mance of the detection algorithms. The results demonstrates a good performance
for both algorithms, in which mean repeatability remained above 90%.

Variations of scalar order, on the other hand, greatly impact SURF repeata-
bility performance. Fig. 2b demonstrates the low repeatability rate of SURF
algorithm in the LIC collection. LSAC SURF demonstrated a much higher and
constant mean repeatability rate, presenting a significant improvement in the
mean repeatability for all values of α. Note that a higher mean repeatability
rate occurs for the smaller values of α, in both SURF and LSAC SURF, due to
the tendency to find a smaller number of features in darker images.

Results of the mean repeatability rate of the ALCC collection, Fig. 2c, demon-
strate that the mean repeatability rate was not significantly affected by the il-
lumination color variation, presenting a mean repeatability rate above 90% for
both algorithms. This result can be justified by the weight of the color compo-
nents in the grayscale conversion. When varying the light source from yellow to
white, only the blue component of the RGB model varies. Since the weight of the
blue component (0.114) is considerably lower than the weight of the red (0.299)
and green components (0.587), the variation in this color channel does not cause
a sufficient large photometric variation to impact the grayscale image used in
the feature detection. However, when varying the color of the light source from
bluish to white (LCC collection) the mean repeatability rate of LSAC SURF
significantly outperformed SURF. Fig. 2d demonstrates once again the the low

...

...

...

...

...

...

...

...

Fig. 1: Samples of the controlled indoor image set. From top row to bottom:
samples of one object in the LIS, LIC, ALCC and LCC collections
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Fig. 2: Mean repeatability of (a)LIS, (b)LIC, (c)ALCC and (d)LCC collections.

repeatability rate of SURF algorithm and its tendency to decrease with higher
values of α, while LSAC SURF presented a much higher and constant mean
repeatability rate.

6.3 Real World Image Set

Here, the proposed method is tested on a data set of real images. This data
set consists of twelve indoor images of a robotic soccer field. Images were taken
with the camera mounted in a fixed position, while the scene illumination was
varied through several combinations of individually regulated ceiling lightings.
This dataset offers a challenging environment for robust feature detection since it
contains non-uniform illumination due to multiple sources (different bulb lamps

Fig. 3: Dataset of real images: robotic soccer field
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Fig. 4: Repeatability of the Robotic Soccer Field collection

in the ceiling and natural illumination from the windows), as well as variations in
the color of the illuminant, shading, shadows, specularities, and interreflections.

The theoretical improvement offered by the LSAC SURF in the robustness of
feature detection can be experimentally verified through the Fig. 4. This result
demonstrates the low repeatability rate of SURF algorithm in the Robotic Soccer
Field collection, which remained around 29% for all images. LSAC SURF, on the
other hand, demonstrated a much higher repeatability rate, not lower than 65%,
presenting a significant improvement in the repeatability score in all illumination
conditions.

7 Conclusion

In this paper, the LSAC SURF approach was introduced as an extension of SURF
algorithm. The methodology proposed has shown to be able to improve feature
detection repeatability rates in scenarios where the uniform light-source assump-
tion is too restrictive. The theoretical analysis demonstrated which variations in
the illuminant affects images derivatives and SURF responses. We demonstrated
that SURF response is proportional to the square of the scalar variation of the
illuminant.

The experimental results validate the theoretical invariance property of the
proposed approach. We have shown that LSAC SURF detection can be as ac-
curate as the original SURF detection when the light source is (approximately)
uniform. Furthermore, when the illumination conditions vary significantly (pres-
ence of two or more distinct light sources, variations in color, in scale, etc.) in
an image, the proposed methodology is able to overcome the performance of
the existing algorithm considerably. Future works will concern with conducing
experimental tests in real robot localization datasets, comparing the drift of the
proposed methodology with the original SURF algorithm.
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