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Abstract—Using robotic simulators, researchers are able to 
improve the algorithms of their robotics platforms before testing 
them in real environments. In fact, the safe environment 
provided by simulation is important, especially for robots that 
are constantly in contact with human beings, such as assistive 
robots and intelligent wheelchairs. Here, we propose to take 
advantage of an available general robotics simulator to model the 
IntellWheel’s intelligent wheelchair prototype and its 
environment, enabling patient’s drills and creating a test bed to 
refine and to experiment new methodologies of autonomous 
navigation, obstacle avoidance and human-machine interaction. 
As a result of the evaluation of four general simulators, the 
USARSim simulator has demonstrated to be more suitable to 
serve as basis for the IntellWheels simulation prototype. The 
development of a rough model of the intelligent wheelchair and of 
an appropriate test environment proved that with some 
modifications USARSim is able to provide a very realistic 
simulation platform for Intelligent Wheelchairs. 

Keywords- Intelligent Wheelchair, Simulation, Mixed Reality 

I.  INTRODUCTION  

In the attempt of assisting people with mobility problems, 
many research projects of intelligent wheelchairs (IWs) have 
been created over the last years [1]. According to the general 
concept, an intelligent wheelchair can be defined as a robotic 
device built from an electric powered wheelchair, provided 
with a sensorial system, actuators and processing capabilities. 
At the same time, it is assumed that IW may present at least 
some skills such as autonomous navigation, autonomous 
planning, extended human-machine interaction, semi-
autonomous behavior with obstacle avoidance, cooperative and 
collaborative behaviors. Thus, IW may be a good solution to 
assist severely handicapped people who are unable to operate 
classic electric wheelchairs by themselves in their daily 
activities. The aim of this paper is to take advantage of an 
available robotics simulator to model an intelligent wheelchair 
and its behavior, in order to create a test bed for new 
methodologies of autonomous navigation, obstacle avoidance 
and human-machine interaction, for instance. 

Up to a recent past the use of simulations for simulating 
IWs (as any robot in general) was quite restricted due to the 
lack of general simulators. Usually, the existing simulators 
were developed to deal with some quite specific situations and 
environments. The development of a new tool for the 

simulation of IWs is time and resource consuming, and 
frequently is out of the project’s scope. However, this reality 
started changing due to the release of general simulators and to 
the advantages of using robotics simulators.  

Simulations have a great potential for low cost analysis, 
since it is able to give researchers access to cost-prohibitive 
sensors and robotic platforms. In addition, simulators provide 
the ability to compress time, and so, to evaluate the results of 
time-consuming experiments much faster. They are 
pedagogically proven technique for training [2], so they can be 
used to drill people in safe environments. They allow testing 
under repeatable and controllable conditions, simplifying 
debugging (e.g. the same scenario can be precisely generated to 
trigger a known error). Unlike real testing environments, which 
may not be accessible, or may only be accessible at certain 
times, simulated environments have unlimited availability [3]. 
For example, experiments that require special natural 
illumination (i.e. sun light) may be accessible for just some 
hours a day, and experiments requiring special weather 
conditions (like fog, rain, etc.) may be accessible just a few 
times a year. Simulations also provide researchers virtual 
access to different testing environments, making these virtual 
testing very cost effictive. Actually, with the right modelling, 
the behavior of the robot can be tested in any environment 
(from a reconstruction of a laboratory up to urban 
environments, desserts, catastrophes, lakes, oceans, others 
planets, etc). Finally, the extensive use of simulators allows 
researchers to safely refine their algorithms before testing the 
robot behaviour in real environments.  Although researchers 
are no more required to develop a simulator from scratch, the 
simulation results just reflect the reality when the simulation 
requirements are considered and when the appropriate models 
are introduced. 

A. Requirements for the simulation of robotic systems 

The requirements for simulating mobile robots may differ 
according to the purpose of the simulation. For testing motion 
control, a higher level of detail in multi-body may be 
important. On the other hand, for testing sensor data 
processing, a higher fidelity in the sensors measures is 
desirible. If the simulation aims to evaluate higher level of 
abstractions, like global localization, ground truth data should 
be provided. If machine vision is used by the robot, a good 
rendering is required.  
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Essentially, simulation requirements can be classified into 
physical fidelity and functional fidelity. The former concerns 
with how the simulation looks, sounds and feels. In other 
words, it is the ability of the simulator to render high resolution 
textures, shaders, lighting and reflection. The second concerns 
with the simulation of most of the forces acting on robots and 
on its actuators, including not only but gravity, dragging, 
accelerations and collisions [4]. 

B. Characteristics of the intelligent wheelchair 

The IntellWheels Project is focused on creating a platform 
to develop intelligent wheelchairs, to help people with severe 
disabilities to live a more normal life. It is mainly concerned 
with the research and design of a multi-agent system to enable 
an easy integration of distinct sensors, actuators, user input 
devices, navigation methodologies, intelligent planning 
techniques and cooperation methodologies. This platform aims 
to facilitate the development and testing of new methodologies 
and techniques, and to integrate it with minor modifications 
into most of the commercially available electric wheelchairs. 
We believe that this platform can bring real capabilities to the 
wheelchairs, such as intelligent planning, autonomous and 
semi-autonomous navigation, thus making it possible to 
execute the desired displacement through a high-level 
command language.  

As depicted in the Fig. 1, the hardware architecture of the 
IntellWheels prototype is composed by a set of encoders, 
ultrasounds and infrared sensors, input controls and by an 
ordinary powered wheelchair. The software platform, as 
illustrated in Fig. 2, relies on a multi-agent system (MAS) 
architecture composed basically by four agents, currently under 
development in Object Pascal [5], [6]. 

In order to achieve that, in Section 2, we will analyse the 
existing robotics simulators to model the IntellWheels 
intelligent wheelchair prototype. Then, throughout Section 3, 
we will discuss about the architecture and the main features of 
selected simulator. In Section 4 we describe preliminary results 
of the simulation, and finally, in Section 5, we will present the 
conclusions and suggested future improvements for this work 

II. RELATED WORK 

Currently, an extensive number of simulators are available 
for robotics research. In [4], Craighead et al. identify the 
weakness and strengths  of 14 commercial and open source 
simulators. 

 
Figure 1.  IntellWheels hardware architecture 

 
Figure 2.  IntellWheels software architecture 

However, in our case, specificities of the IntellWheels may 
be taken into account when choosing a tool to simulate 
intelligent wheelchairs. We also agree with Carpin et al. [7], 
when they claim that the simulation of robotic platforms should 
not consider a robot as an isolated entity, but as an entity which 
interact and is affected by the environment where it is situated. 
Therefore, we have restricted our analysis on four simulators 
that are able to offer these possibilities: Unified System for 
Automation and Robot Simulation (USARSim) [8], Microsoft 
Robotics Developer Studio (RDS) [9], Webots [10] and 
Gazebo [11]. 

A. Criteria for evaluating robotics simulators 

In order select the available robotic simulator that better 
model the IntellWheels prototype, we propose the evaluation of 
the simulator using a set of seven criteria:  

1) Import 3D models – we define this criteria as 
the ability of a simulator to import three-dimensional models 
of objects from typical Computer Aided Design (CAD) 
programs (such as Solidworks, Autocad, Pro-engineer, etc). 
We believe that this ability can facilitate the development of a 
more realistic model, thus improving the simulation. The 
evaluation of this criterion receives “yes” when the simulator 
supports importing objects and “no” when it does not. 

2) Programming language – in this criterion we 
identify which programming languages are supported by the 
simulator to create the program that controls the robot. A wide 
support in the programming langue criteria is desired. In 
addition, we look specifically for a simulator that supports 
object pascal, once the IntellWheels platform is currently 
under development in that language. The evaluation of this 
criterion receives the list of the supported languages. 

3) External agent support – concerns the ability 
to run the agent(s) that control the robot from outside of the 
simulator. This characteristic is desired because we want to be 
able to distribute the agents that control an IntellWheels 
prototype and the agents that provide additional services in 
more than one computer. This way, it is possible to increase 
the robustness of the system, since an agent can assume the 
tasks of other agents that for any reason are not answering. 
The evaluation of this criterion receives “yes” when the 
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simulator supports external agents and “no” whenever it does 
not. 

4) Multi-thread support – is the ability of the 
simulator to run more than one simulation task 
simultaneously. This ability is important to improve the 
simulation efficiency. The evaluation of this criterion receives 
“yes” when the simulator supports multi-thread and “no” 
when it does not support. 

5) Physics Engine - concerns the identification 
of the libraries used for computing physics simulation. The 
main task of all physics engines is to solve the motion of the 
system given the forces acting on it. Therefore, they play a 
very important role in the simulation of dynamic systems 
because they are directly responsible for its functional fidelity. 
On the other hand, physics engines have a indirect 
responsibility also in the physical fidelity of the simulation. 
Particularly, the way that a simulation looks is closely 
dependent on the type of features the physic engine is able to 
simulate. For example, simulations with deformable objects 
demonstrate a greater realism over those which consider 
objects as rigid bodies, the simulation of fluids, like fog, may 
be important for machine vision and for video feedback, and 
so on. In subsection 2.2 the weaknesses and strengths of each 
library will be discussed in more detail. The evaluation of this 
criterion receives the name of the library used in each 
simulator. 

6) License – corresponds to the monetary cost 
for the developer and for the end user. The evaluation of this 
criterion can receive the value “Open Source” for those 
simulators that are released with their source code, “free” for 
simulators that are available without any monetary 
compensation and without their source code, and 
“commercial” for those simulators that require monetary 
compensation. 

7) Sensors – in this last criterion we identify 
which sensors are released with the simulators and if the 
simulator allows developers to create new sensors. 

B. Evaluation results 

Each simulator was evaluated through its User Manual or 
equivalent documentation, and results can be summarized in 
Table 1. With the exception of Gazebo, all simulators 
evaluated can import 3D models from typical CAD tools. 
However, when comparing the programming language, only 
USARSim and Gazebo can cope with a wider support. It is 
possible because these simulators rely on a client/server 
architecture with communication through UDP protocol, which 
also provides the support to external agents. Regarding multi-
thread support, only USARSim and Microsoft Robotics Studio 
are able to benefit from the simultaneous task processing. 
Despite several libraries for physics computation available 
(PhysX, Bullet, JigLib, Newton, ODE, Tokamak, True Axis) 
[4], only PhysX and ODE were used by the four robotics 
simulators chosen for comparison. 

ODE (Open Dynamics Engine) is an open-source library 
that is designed for simulations of rigid bodies and articulated 
bodies  dynamics.  For this reason, this library is not able to 
support the simulation of deformable objects, particles and 
fluids. ODE is platform independent with an easy to use C/C++ 
API. The kind of applications ODE was developed for also 
explains some of its characteristics, since ODE was developed 

to support speed, the physics accuracy tends to be 
compromised. On the other hand, PhysX is a proprietary 
solution widely used in Epic games. It provides support to the 
main platforms for games and graphics (such as PS3, XBOX, 
PC, etc.). Its main advantage consists in supporting not only 
rigid and articulated bodies, but also fluids (such as water, 
blood, smoke, gas, etc.) and particles (such as sparks, scattered 
glass fragments, dust, etc.). PhysX has a faster physics 
integration algorithm, and provides a more stable simulation 
when dealing with the collision of several objects [12]. In 
addition to the physics library, nVidia has also developed a 
special hardware device: the Physics Processing Unit (PPU).  

With respect to the license, Gazebo and USARSim are 
open source simulators. At this point, it may be noticed that 
despite USARSim is open source, it relies on a proprietary 
engine and so has a small monetary cost corresponding to the 
Unreal Tournament 3. In its latest version Microsoft has 
combined the previous Express, Standard and Academic 
licenses into one license (RDS 2008 R3) free of charge, while 
the Webots has a commercial license with versions that costs 
from €250,00 Eur.  (EDU version) up to €2600,00 Eur. (PRO 
version). Finally, the analyses of the sensors criteria revealed 
that all four simulators present the basic sensors used in the 
IntellWheels. The only severe limitation was observed in the 
RDS, which does not allow researchers to develop new 
sensors. For these reasons, USARSim was selected to simulate 
the IntellWheels prototypes. We have considered the lack of 
support for Object Pascal of the RDS and  Webots, the 
limitation in the development of new sensors of the RDS, the 
cost of Webots, and the lack to support multi-task processing 
and to import 3D models as the main problems of the other 
simulators. USARSim, on the other hand, presents a superior 
physics engine, has the validation of several sensors and 
actuators and is probably the most used robotics simulator 
within the scientific community. 

III. USARSIM SIMULATOR 

As elegantly described by Carpin et al. [7], “USARsim is a 
general-purpose multi-robot simulator that can be extended to 
model arbitrary application scenarios”. It was designed to 
create physically accurate simulations of robots for research in 
fields like the human-robot interaction and multi-robot 
coordination. The simulator is built upon a commercial game 
engine thanks to the architecture of the Unreal Tournament 3, 
which separates the game logic and rules from simulation 
dynamics and environmental data. This way the game core 
code was reused and applied to a more comprehensive 
simulation, providing USARsim with high realistic visual 
rendering and high performance physics simulation. A further 
advantage relies in the fact that every improvement driven by 
the gaming industry translates directly into simulation 
advantages, which is particularly true for hyper realistic 
rendering and physical simulation [13]. 

The simulator is open source under the GPL licensing, and 
platform independent, running under operating systems like 
Windows, Linux an MacOS. USARSim is highly configurable 
and extensible, allowing users to develop new sensors, to 
model new robots and to create and re-create virtually any 
desired environment. As a consequence of its advantages, 
USARSim has become quite widespread within the scientific 
community, which has released a number of improvements. 
Simultaneously, researchers have published several papers with 
quantitative evaluations that demonstrate a very close similarity 
between the real world and USARSim system and sensors [8]. 
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TABLE I.  MAIN CHARACTERISTICS OF THE MOST USED 3D SIMULATORS 
IN THE ROBOTICS 

Features  USARSim  RDS  Webots  Gazebo 

Import 3D models  yes  yes  yes  no 

Programming language  Any (UDP) 
C#, VB, 
JScript,  

IronPython 

C,C++,Java, 
Python, 
MATLAB 

Any 
(TCP/UDP)  

 External agent support  yes  no  no  yes 

 Multi‐thread support  yes  yes  no  no 

 Physics Engine 
UT3 with 
PhysX 

PhysX  ODE  ODE 

 License 
Open 

Source* 
Free  Commercial 

Open 
Source 

Se
n
so
rs
 

 Camera  yes  yes  yes  yes 

 Touch sensors  no  yes  yes  yes 

 Sonar Sensors  yes  yes  yes  yes 

 Infra‐red  yes  yes  yes  yes 

 Sound sensor  yes  no  no  no 

 GPS  yes  yes  yes  yes 

 RFID  yes  no  no  yes 

Laser Range 
Finders 

yes  yes  yes  yes 

Create new 
sensor 

yes  no  yes  yes 

 
The Unreal Engine is responsible for the sound, physics 

engine (collision detection and collision response), scripting, 
animation, threading, streaming, memory management and for 
rendering 3D graphics. On the initialization of the simulator, 
the Unreal Engine loads the set of geometrical models that 
describes all the objects in the simulation environment. For 
each object it is possible to specify its shape, colour and texture 
(among other properties). In addition, the Unreal Engine also 
loads a set of classes of compiled scripts that govern the 
behaviour of loaded models [14].  

However, once the Unreal Engine is proprietary, it is not 
possible to establish a straight communication between the 
clients and the server. Instead, all the information exchange (in 
both directions with the engine) may occur through the 
network by means of a middleware application called 
Gamebots. The client side includes the Unreal client and the 
controller or the user side applications. Unreal clients are 
responsible for providing video feedback, rendering the 
simulated environment. The whole system architecture is 
depicted in Fig. 3. 

A. Communication and control 

All communication between the controllers and the Unreal 
Server is made through Gamebots. This middleware opens a 
TCP/IP socket for communication, allowing up to 16 
connections (by default). The communication follows the 
Gamebots protocol, which is divided into Messages and 
Commands, following the structure: 

data_type {segment1} {segment2}… 

Where:  ‘data_type’ specifies the type of the data and 
‘segment’ specify the list of name/value pairs. 

In Gamebots, Messages are a specific type of 
communication that contains information about the robot state 
(data_type = STA) or about the sensor data collected 
(data_type = SEN). On the other hand, commands contain 
instructions to control the world (data_type = INI), the robot 
(data_type = DRIVE), the camera (data_type = CAMERA) or 

robot’s sensors (data_type = SENSOR). The main commands 
used for controlling a simulated intelligent wheelchair are 
briefly described above: 

1) Init - This command adds a robot to the 
simulation, and is instantiated as: 

INIT {ClassName robot_name} {Location x,y,z} 

Where: {ClassName robot_name} ‘robot_name’ is the class 
name of the robot and {Location x,y,z} ‘x,y,z’ is the stat 
position of the robot in Unreal Unit. 

2) Drive - This command is used to control the 
left and right side wheels, on a percentage of  maxValue: 

DRIVE {Left float}{Right float}{Light bool}{Flip bool} 

Where: {Left float} ‘float’ is the spin speed for the left side 
wheel and {Right float} ‘float’ is spin speed for the right side 
wheel. Their range is –1.0 ~1.0 (move backward and move 
forward respectively). {Light bool} ‘bool’ is the Boolean value 
for turning on or turning off the headlight. {Flip bool} ‘bool’ is 
the Boolean value for flipping the robot. 

3) Camera – This command controls the robot 
camera orientation and focus. 

CAMERA {Rotation pitch,yaw,roll} {Zoom int} 

Where: {Rotation pitch,yaw,roll} ‘pitch,yaw,roll’ is the relative 
value or absolute rotation angle of the camera. {Zoom int} ‘int’ 
is the zoom value. Positive values means zoom in, while 
negative values means zoom out. 

B. Sensors 

In USARSim, each virtual sensor is treated as an instance 
of a sensor class. Despite all the objects of a sensor class have 
the same sensing capability, it is possible to configure each 
sensor individually with different parameters (e.g. noise, 
distortion), allowing them to be simulated as close as possible 
of their counterparts in real systems. In addition, it is also 
possible to create a new type of sensors derived from a pre-
existing sensor class. 

Currently, just a few classes of sensors were already ported 
from the previous version of USARSim to the new UT3 
version. Among those, we can find three classes of sensors that 
may be used in the simulation of the IntellWheels prototype: 
encoder, ground through and Range Finder sensors. Fig. 4 
depicts the main classes of sensor present in USARSim.  

 
Figure 3.  Architecture of the USARSim simulator (adapted from [8]) 
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Classes of sensors drawn in blue were already ported from 
the previous version of USARSim and are distributed with the 
beta release [8]. Classes in green and purple were not ported 
from UT2004.  However, in order to simulate the full set of 
sensors present in IntellWheels prototype, two subclasses of 
sensor (drawn in purple) were specially implemented in this 
project. A brief description of each class and its main 
characteristics will be presented bellow: 

1) Encoder - This sensor measures a part's spin 
angle around the sensor's axis. The returned value is a tick 
count which is the real angle divided by the sensor's 
resolution. There are three parameters that can be set up in this 
sensor:  

 Resolution: minimum spin angle the sensor can recognize 
[radians] 
Noise: it is the maximum amplitude of the noise [% of the 
truth measure]. The returned value containing the number 
of ticks (NTicks) with noise is then computed through the 
following equation: 

 ݏ݇ܿ݅ܶܰ ൌ ሺ1  ,݁ݏ݅ሺെ݊݀݊ܽݎ ሻሻ݁ݏ݅݊ ∗ ݏ݇ܿ݅ܶܰ 

 Wheel: attach the encoder to its respective wheel. To 
perform such set up, one may use ‘W’ followed by the 
wheel number as the name of the sensor (e.g. EncoderW1). 

The output of this sensor is a Message containing the type 
and name of the sensor and the number of ticks: 

SEN {Type Encoder} {Name EncoderW1} {Tick NumTicks}  

2) Ground truth sensor - This sensor returns 
accurate measures of the robots global position and 
orientation. Since it does not introduce any noise in its 
measures, the output data may be used to verify the 
performance of the robots localization algorithms, as well as 
for debugging and for testing high level algorithms (e.g. 
decision, planning, collaboration). The output of the Ground 
truth sensor is a Message with the type and the name of the 
sensor, the position and orientation of the robot at a given time 
stamp (Timestamp): 

SEN {Time Timestamp} {Type GroundTruth} {Name GndTruth} 
{Location x,y,z} {Orientation roll,pitch,yaw } 

3) Infra-red sensor - The IR sensor class 
implements the simulation of Infra-red sensors. This kind of 
sensor is used to detect the distance to the closest point 
(object) that lies on the line from the sensors position with the 
direction of the sensor. A full set up of this sensor includes the 
following parameters: 

 HiddenSensor: Boolean variable used to indicate whether 
the sensor will be visually. 

 MaxRange: maximum distance in which the sensor can 
detect objects [m]. 

 ScanInterval: time difference between two consecutive 
readings.  

 Noise: it is the maximum amplitude of the noise [% of the 
truth measure]. The returned value containing the range 
distance (d) with noise is then computed through the 
following equation: 

 ݀ ൌ ൫1  ,݁ݏ݅ሺെ݊݀݊ܽݎ ሻ൯݀݁ݏ݅݊ 

 
Figure 4.  Classes of sensors in USARSim 

 bWithTimeStamp: Boolean variable used to indicate 
whether the time stamp in the output message is included. 

A typical IR Sensor output Message includes information 
about the time stamp (Timestamp), the type of the sensor 
(Range), its name (IR1) and the measured distance 
(DistanceValue): 

SEN {Time Timestamp} {Type Range} {Name IR1 Range 
DistanceValue} 

4) Sonar - Sonar sensor class was designed to 
implement the simulation of ultrasound sensors, following the 
same concept used to implement it in previous versions of 
USARSim (as a series of IR sensors). Thus, data is obtained 
by rotating the sensor step by step (resolution) from the start to 
the end direction (field of view). Finally, the lowest from the 
data gathered by the sensor is then returned in the output 
Message. This presents the folowing parameters: 

 HiddenSensor: Boolean variable used to indicate whether 
the sensor will be visible. 

 MaxRange: maximum distance in which the sensor can 
detect objects [m]. 

 ScanInterval: time difference between two consecutive 
readings [s].  

 Resolution: number of radians of each step [rad]. 
 Noise: it is the maximum amplitude of the noise [% of the 

truth value measured]. The returned value containing the 
range distance (d) with noise is then computed through (2). 

 ScanFov: sensor’s field of view [rad]. 
 bWithTimeStamp: Boolean variable used to whether 

include or not the time stamp in the output message. 

The output message of sonar sensors contains information 
about the time stamp (Timestamp), the type of the sensor 
(Range), its name (Sonar1) and the measured distance 
(DistanceValue): 

SEN {Time Timestamp} {Type Range} {Name Sonar1 Range 
DistanceValue} 
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Figure 5.  GUI of the robot controller  

IV. PRELIMINAR EXPERIMENTS 

In order to run initial experiments of communication 
between the control agent and the simulator we have used a 
robotic platform released with the USARSim simulator. P3AT 
is a skid-steer robot with 50cm x 49cm x 26cm of body size 
and four 21.5cm diameter wheels from ActivMedia Robotic. 
With proper configuration, the robot was provided with a 
camera and a set of eight sonars and eight infrared sensors 
assembled in a semi-circular ring around its body. In order 
receive the feedback from the simulator, a simple Graphic User 
Interface (GUI) was developed (Fig. 5). Through that interface, 
it is possible to create the robot in USARSim, parse the 
message containing the measures of each sensor and steer the 
vehicle in the simulated world. 

V. CONCLUSIONS 

In this paper, we have discussed the benefits of simulation 
in robotics and presented the requirements and characteristics 
for the simulation of intelligent wheelchairs – more specifically 
to the prototype developed in IntellWheels project. A set of 
seven criteria were proposed to assist in the evaluation of 
robotics simulators.  

The results of the evaluation have demonstrated that  both 
RDS and  Webots lack on supporting Object Pascal. Also, RDS 
has a severe limitation in the development of new sensors, and 
Webots has high monetary cost associated. USARSim, on the 
other hand, has demonstrated a superior physics engine and a 
validation of several sensors and actuators. Thus, USARSim 
was selected for simulating the IntellWheels prototype. Once 
some important classes of sensors had not been ported from the 
previous version of the USARSim simulator, we have 
implemented one class for simulating the ultra-sound sensors 
and one class for simulating the infra-red sensors. Preliminary 
results were achieved using a P3AT platform configured with 
eight sonars and infrared sensors. A robot controller was 
developed in order to create and steer the robot in the simulated 
world and to parse the messages received from simulator. 

As future work, we intend to design a realistic model of the 
wheelchair and of a cluttered environment. In addition, with the 
integration of the agents that control the IntellWheels 
prototype, we intend to create mixed reality environments. 
Drills of patients with real wheelchairs in virtual scenarios 
could be performed with increased realism, eliminating the risk 
of injuries and the stress of steering the wheelchair in the real 
environment. Furthermore, mixed reality experiments would 

make it possible to test the real IW in several scenarios (e.g. 
narrow corridors, crowded places, moving objects) in a safe 
(free of collisions with real objects, reducing the risk damaging 
the equipment) and inexpensive way (reduced time demanded 
to create scenarios, and minimum infra-structure cost). 
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