
Intelligent Wheelchair Simulation:

Requirements and Architectural Issues

Marcelo Petry, Antonio Paulo Moreira
Robotics and Intelligent Systems - INESCPorto

Faculty of Engineering, University of Porto – FEUP/UP
Porto, Portugal

marcelo.petry@fe.up.pt, amoreira@fe.up.pt

Luis Paulo Reis, Rosaldo Rossetti
Artificial Intelligence and Computer Science Laboratory
Faculty of Engineering, University of Porto – FEUP/UP

Porto, Portugal
lpreis@fe.up.pt, rossetti@fe.up.pt

Abstract—Using robotic simulators, researchers are able to
improve the algorithms of their robotics platforms before testing
them in real environments. In fact, the safe environment
provided by simulation is important, especially for robots that
are constantly in contact with human beings, such as assistive
robots and intelligent wheelchairs. Here, we propose to take
advantage of an available general robotics simulator to model the
IntellWheel’s intelligent wheelchair prototype and its
environment, enabling patient’s drills and creating a test bed to
refine and to experiment new methodologies of autonomous
navigation, obstacle avoidance and human-machine interaction.
As a result of the evaluation of four general simulators, the
USARSim simulator has demonstrated to be more suitable to
serve as basis for the IntellWheels simulation prototype. The
development of a rough model of the intelligent wheelchair and of
an appropriate test environment proved that with some
modifications USARSim is able to provide a very realistic
simulation platform for Intelligent Wheelchairs.

Keywords- Intelligent Wheelchair, Simulation, Mixed Reality

I. INTRODUCTION

In the attempt of assisting people with mobility problems,
many research projects of intelligent wheelchairs (IWs) have
been created over the last years [1]. According to the general
concept, an intelligent wheelchair can be defined as a robotic
device built from an electric powered wheelchair, provided
with a sensorial system, actuators and processing capabilities.
At the same time, it is assumed that IW may present at least
some skills such as autonomous navigation, autonomous
planning, extended human-machine interaction, semi-
autonomous behavior with obstacle avoidance, cooperative and
collaborative behaviors. Thus, IW may be a good solution to
assist severely handicapped people who are unable to operate
classic electric wheelchairs by themselves in their daily
activities. The aim of this paper is to take advantage of an
available robotics simulator to model an intelligent wheelchair
and its behavior, in order to create a test bed for new
methodologies of autonomous navigation, obstacle avoidance
and human-machine interaction, for instance.

Up to a recent past the use of simulations for simulating
IWs (as any robot in general) was quite restricted due to the
lack of general simulators. Usually, the existing simulators
were developed to deal with some quite specific situations and
environments. The development of a new tool for the

simulation of IWs is time and resource consuming, and
frequently is out of the project’s scope. However, this reality
started changing due to the release of general simulators and to
the advantages of using robotics simulators.

Simulations have a great potential for low cost analysis,
since it is able to give researchers access to cost-prohibitive
sensors and robotic platforms. In addition, simulators provide
the ability to compress time, and so, to evaluate the results of
time-consuming experiments much faster. They are
pedagogically proven technique for training [2], so they can be
used to drill people in safe environments. They allow testing
under repeatable and controllable conditions, simplifying
debugging (e.g. the same scenario can be precisely generated to
trigger a known error). Unlike real testing environments, which
may not be accessible, or may only be accessible at certain
times, simulated environments have unlimited availability [3].
For example, experiments that require special natural
illumination (i.e. sun light) may be accessible for just some
hours a day, and experiments requiring special weather
conditions (like fog, rain, etc.) may be accessible just a few
times a year. Simulations also provide researchers virtual
access to different testing environments, making these virtual
testing very cost effictive. Actually, with the right modelling,
the behavior of the robot can be tested in any environment
(from a reconstruction of a laboratory up to urban
environments, desserts, catastrophes, lakes, oceans, others
planets, etc). Finally, the extensive use of simulators allows
researchers to safely refine their algorithms before testing the
robot behaviour in real environments. Although researchers
are no more required to develop a simulator from scratch, the
simulation results just reflect the reality when the simulation
requirements are considered and when the appropriate models
are introduced.

A. Requirements for the simulation of robotic systems

The requirements for simulating mobile robots may differ
according to the purpose of the simulation. For testing motion
control, a higher level of detail in multi-body may be
important. On the other hand, for testing sensor data
processing, a higher fidelity in the sensors measures is
desirible. If the simulation aims to evaluate higher level of
abstractions, like global localization, ground truth data should
be provided. If machine vision is used by the robot, a good
rendering is required.

Proceedings of the 11th International Conference on Mobile Robots and Competitions IST TU Lisbon Congress Center

Page 102 Robotica 2011 is organized under the IEEE Robotics and Automation Society Technical Co-Sponsorship

Essentially, simulation requirements can be classified into
physical fidelity and functional fidelity. The former concerns
with how the simulation looks, sounds and feels. In other
words, it is the ability of the simulator to render high resolution
textures, shaders, lighting and reflection. The second concerns
with the simulation of most of the forces acting on robots and
on its actuators, including not only but gravity, dragging,
accelerations and collisions [4].

B. Characteristics of the intelligent wheelchair

The IntellWheels Project is focused on creating a platform
to develop intelligent wheelchairs, to help people with severe
disabilities to live a more normal life. It is mainly concerned
with the research and design of a multi-agent system to enable
an easy integration of distinct sensors, actuators, user input
devices, navigation methodologies, intelligent planning
techniques and cooperation methodologies. This platform aims
to facilitate the development and testing of new methodologies
and techniques, and to integrate it with minor modifications
into most of the commercially available electric wheelchairs.
We believe that this platform can bring real capabilities to the
wheelchairs, such as intelligent planning, autonomous and
semi-autonomous navigation, thus making it possible to
execute the desired displacement through a high-level
command language.

As depicted in the Fig. 1, the hardware architecture of the
IntellWheels prototype is composed by a set of encoders,
ultrasounds and infrared sensors, input controls and by an
ordinary powered wheelchair. The software platform, as
illustrated in Fig. 2, relies on a multi-agent system (MAS)
architecture composed basically by four agents, currently under
development in Object Pascal [5], [6].

In order to achieve that, in Section 2, we will analyse the
existing robotics simulators to model the IntellWheels
intelligent wheelchair prototype. Then, throughout Section 3,
we will discuss about the architecture and the main features of
selected simulator. In Section 4 we describe preliminary results
of the simulation, and finally, in Section 5, we will present the
conclusions and suggested future improvements for this work

II. RELATED WORK

Currently, an extensive number of simulators are available
for robotics research. In [4], Craighead et al. identify the
weakness and strengths of 14 commercial and open source
simulators.

Figure 1. IntellWheels hardware architecture

Figure 2. IntellWheels software architecture

However, in our case, specificities of the IntellWheels may
be taken into account when choosing a tool to simulate
intelligent wheelchairs. We also agree with Carpin et al. [7],
when they claim that the simulation of robotic platforms should
not consider a robot as an isolated entity, but as an entity which
interact and is affected by the environment where it is situated.
Therefore, we have restricted our analysis on four simulators
that are able to offer these possibilities: Unified System for
Automation and Robot Simulation (USARSim) [8], Microsoft
Robotics Developer Studio (RDS) [9], Webots [10] and
Gazebo [11].

A. Criteria for evaluating robotics simulators

In order select the available robotic simulator that better
model the IntellWheels prototype, we propose the evaluation of
the simulator using a set of seven criteria:

1) Import 3D models – we define this criteria as
the ability of a simulator to import three-dimensional models
of objects from typical Computer Aided Design (CAD)
programs (such as Solidworks, Autocad, Pro-engineer, etc).
We believe that this ability can facilitate the development of a
more realistic model, thus improving the simulation. The
evaluation of this criterion receives “yes” when the simulator
supports importing objects and “no” when it does not.

2) Programming language – in this criterion we
identify which programming languages are supported by the
simulator to create the program that controls the robot. A wide
support in the programming langue criteria is desired. In
addition, we look specifically for a simulator that supports
object pascal, once the IntellWheels platform is currently
under development in that language. The evaluation of this
criterion receives the list of the supported languages.

3) External agent support – concerns the ability
to run the agent(s) that control the robot from outside of the
simulator. This characteristic is desired because we want to be
able to distribute the agents that control an IntellWheels
prototype and the agents that provide additional services in
more than one computer. This way, it is possible to increase
the robustness of the system, since an agent can assume the
tasks of other agents that for any reason are not answering.
The evaluation of this criterion receives “yes” when the

Proceedings of the 11th International Conference on Mobile Robots and Competitions IST TU Lisbon Congress Center

Page 103 Robotica 2011 is organized under the IEEE Robotics and Automation Society Technical Co-Sponsorship

simulator supports external agents and “no” whenever it does
not.

4) Multi-thread support – is the ability of the
simulator to run more than one simulation task
simultaneously. This ability is important to improve the
simulation efficiency. The evaluation of this criterion receives
“yes” when the simulator supports multi-thread and “no”
when it does not support.

5) Physics Engine - concerns the identification
of the libraries used for computing physics simulation. The
main task of all physics engines is to solve the motion of the
system given the forces acting on it. Therefore, they play a
very important role in the simulation of dynamic systems
because they are directly responsible for its functional fidelity.
On the other hand, physics engines have a indirect
responsibility also in the physical fidelity of the simulation.
Particularly, the way that a simulation looks is closely
dependent on the type of features the physic engine is able to
simulate. For example, simulations with deformable objects
demonstrate a greater realism over those which consider
objects as rigid bodies, the simulation of fluids, like fog, may
be important for machine vision and for video feedback, and
so on. In subsection 2.2 the weaknesses and strengths of each
library will be discussed in more detail. The evaluation of this
criterion receives the name of the library used in each
simulator.

6) License – corresponds to the monetary cost
for the developer and for the end user. The evaluation of this
criterion can receive the value “Open Source” for those
simulators that are released with their source code, “free” for
simulators that are available without any monetary
compensation and without their source code, and
“commercial” for those simulators that require monetary
compensation.

7) Sensors – in this last criterion we identify
which sensors are released with the simulators and if the
simulator allows developers to create new sensors.

B. Evaluation results

Each simulator was evaluated through its User Manual or
equivalent documentation, and results can be summarized in
Table 1. With the exception of Gazebo, all simulators
evaluated can import 3D models from typical CAD tools.
However, when comparing the programming language, only
USARSim and Gazebo can cope with a wider support. It is
possible because these simulators rely on a client/server
architecture with communication through UDP protocol, which
also provides the support to external agents. Regarding multi-
thread support, only USARSim and Microsoft Robotics Studio
are able to benefit from the simultaneous task processing.
Despite several libraries for physics computation available
(PhysX, Bullet, JigLib, Newton, ODE, Tokamak, True Axis)
[4], only PhysX and ODE were used by the four robotics
simulators chosen for comparison.

ODE (Open Dynamics Engine) is an open-source library
that is designed for simulations of rigid bodies and articulated
bodies dynamics. For this reason, this library is not able to
support the simulation of deformable objects, particles and
fluids. ODE is platform independent with an easy to use C/C++
API. The kind of applications ODE was developed for also
explains some of its characteristics, since ODE was developed

to support speed, the physics accuracy tends to be
compromised. On the other hand, PhysX is a proprietary
solution widely used in Epic games. It provides support to the
main platforms for games and graphics (such as PS3, XBOX,
PC, etc.). Its main advantage consists in supporting not only
rigid and articulated bodies, but also fluids (such as water,
blood, smoke, gas, etc.) and particles (such as sparks, scattered
glass fragments, dust, etc.). PhysX has a faster physics
integration algorithm, and provides a more stable simulation
when dealing with the collision of several objects [12]. In
addition to the physics library, nVidia has also developed a
special hardware device: the Physics Processing Unit (PPU).

With respect to the license, Gazebo and USARSim are
open source simulators. At this point, it may be noticed that
despite USARSim is open source, it relies on a proprietary
engine and so has a small monetary cost corresponding to the
Unreal Tournament 3. In its latest version Microsoft has
combined the previous Express, Standard and Academic
licenses into one license (RDS 2008 R3) free of charge, while
the Webots has a commercial license with versions that costs
from €250,00 Eur. (EDU version) up to €2600,00 Eur. (PRO
version). Finally, the analyses of the sensors criteria revealed
that all four simulators present the basic sensors used in the
IntellWheels. The only severe limitation was observed in the
RDS, which does not allow researchers to develop new
sensors. For these reasons, USARSim was selected to simulate
the IntellWheels prototypes. We have considered the lack of
support for Object Pascal of the RDS and Webots, the
limitation in the development of new sensors of the RDS, the
cost of Webots, and the lack to support multi-task processing
and to import 3D models as the main problems of the other
simulators. USARSim, on the other hand, presents a superior
physics engine, has the validation of several sensors and
actuators and is probably the most used robotics simulator
within the scientific community.

III. USARSIM SIMULATOR

As elegantly described by Carpin et al. [7], “USARsim is a
general-purpose multi-robot simulator that can be extended to
model arbitrary application scenarios”. It was designed to
create physically accurate simulations of robots for research in
fields like the human-robot interaction and multi-robot
coordination. The simulator is built upon a commercial game
engine thanks to the architecture of the Unreal Tournament 3,
which separates the game logic and rules from simulation
dynamics and environmental data. This way the game core
code was reused and applied to a more comprehensive
simulation, providing USARsim with high realistic visual
rendering and high performance physics simulation. A further
advantage relies in the fact that every improvement driven by
the gaming industry translates directly into simulation
advantages, which is particularly true for hyper realistic
rendering and physical simulation [13].

The simulator is open source under the GPL licensing, and
platform independent, running under operating systems like
Windows, Linux an MacOS. USARSim is highly configurable
and extensible, allowing users to develop new sensors, to
model new robots and to create and re-create virtually any
desired environment. As a consequence of its advantages,
USARSim has become quite widespread within the scientific
community, which has released a number of improvements.
Simultaneously, researchers have published several papers with
quantitative evaluations that demonstrate a very close similarity
between the real world and USARSim system and sensors [8].

Proceedings of the 11th International Conference on Mobile Robots and Competitions IST TU Lisbon Congress Center

Page 104 Robotica 2011 is organized under the IEEE Robotics and Automation Society Technical Co-Sponsorship

TABLE I. MAIN CHARACTERISTICS OF THE MOST USED 3D SIMULATORS
IN THE ROBOTICS

Features USARSim RDS Webots Gazebo

Import 3D models yes yes yes no

Programming language Any (UDP)
C#, VB,
JScript,

IronPython

C,C++,Java,
Python,
MATLAB

Any
(TCP/UDP)

 External agent support yes no no yes

 Multi‐thread support yes yes no no

 Physics Engine
UT3 with
PhysX

PhysX ODE ODE

 License
Open

Source*
Free Commercial

Open
Source

Se
n
so
rs

 Camera yes yes yes yes

 Touch sensors no yes yes yes

 Sonar Sensors yes yes yes yes

 Infra‐red yes yes yes yes

 Sound sensor yes no no no

 GPS yes yes yes yes

 RFID yes no no yes

Laser Range
Finders

yes yes yes yes

Create new
sensor

yes no yes yes

The Unreal Engine is responsible for the sound, physics

engine (collision detection and collision response), scripting,
animation, threading, streaming, memory management and for
rendering 3D graphics. On the initialization of the simulator,
the Unreal Engine loads the set of geometrical models that
describes all the objects in the simulation environment. For
each object it is possible to specify its shape, colour and texture
(among other properties). In addition, the Unreal Engine also
loads a set of classes of compiled scripts that govern the
behaviour of loaded models [14].

However, once the Unreal Engine is proprietary, it is not
possible to establish a straight communication between the
clients and the server. Instead, all the information exchange (in
both directions with the engine) may occur through the
network by means of a middleware application called
Gamebots. The client side includes the Unreal client and the
controller or the user side applications. Unreal clients are
responsible for providing video feedback, rendering the
simulated environment. The whole system architecture is
depicted in Fig. 3.

A. Communication and control

All communication between the controllers and the Unreal
Server is made through Gamebots. This middleware opens a
TCP/IP socket for communication, allowing up to 16
connections (by default). The communication follows the
Gamebots protocol, which is divided into Messages and
Commands, following the structure:

data_type {segment1} {segment2}…

Where: ‘data_type’ specifies the type of the data and
‘segment’ specify the list of name/value pairs.

In Gamebots, Messages are a specific type of
communication that contains information about the robot state
(data_type = STA) or about the sensor data collected
(data_type = SEN). On the other hand, commands contain
instructions to control the world (data_type = INI), the robot
(data_type = DRIVE), the camera (data_type = CAMERA) or

robot’s sensors (data_type = SENSOR). The main commands
used for controlling a simulated intelligent wheelchair are
briefly described above:

1) Init - This command adds a robot to the
simulation, and is instantiated as:

INIT {ClassName robot_name} {Location x,y,z}

Where: {ClassName robot_name} ‘robot_name’ is the class
name of the robot and {Location x,y,z} ‘x,y,z’ is the stat
position of the robot in Unreal Unit.

2) Drive - This command is used to control the
left and right side wheels, on a percentage of maxValue:

DRIVE {Left float}{Right float}{Light bool}{Flip bool}

Where: {Left float} ‘float’ is the spin speed for the left side
wheel and {Right float} ‘float’ is spin speed for the right side
wheel. Their range is –1.0 ~1.0 (move backward and move
forward respectively). {Light bool} ‘bool’ is the Boolean value
for turning on or turning off the headlight. {Flip bool} ‘bool’ is
the Boolean value for flipping the robot.

3) Camera – This command controls the robot
camera orientation and focus.

CAMERA {Rotation pitch,yaw,roll} {Zoom int}

Where: {Rotation pitch,yaw,roll} ‘pitch,yaw,roll’ is the relative
value or absolute rotation angle of the camera. {Zoom int} ‘int’
is the zoom value. Positive values means zoom in, while
negative values means zoom out.

B. Sensors

In USARSim, each virtual sensor is treated as an instance
of a sensor class. Despite all the objects of a sensor class have
the same sensing capability, it is possible to configure each
sensor individually with different parameters (e.g. noise,
distortion), allowing them to be simulated as close as possible
of their counterparts in real systems. In addition, it is also
possible to create a new type of sensors derived from a pre-
existing sensor class.

Currently, just a few classes of sensors were already ported
from the previous version of USARSim to the new UT3
version. Among those, we can find three classes of sensors that
may be used in the simulation of the IntellWheels prototype:
encoder, ground through and Range Finder sensors. Fig. 4
depicts the main classes of sensor present in USARSim.

Figure 3. Architecture of the USARSim simulator (adapted from [8])

Proceedings of the 11th International Conference on Mobile Robots and Competitions IST TU Lisbon Congress Center

Page 105 Robotica 2011 is organized under the IEEE Robotics and Automation Society Technical Co-Sponsorship

Classes of sensors drawn in blue were already ported from
the previous version of USARSim and are distributed with the
beta release [8]. Classes in green and purple were not ported
from UT2004. However, in order to simulate the full set of
sensors present in IntellWheels prototype, two subclasses of
sensor (drawn in purple) were specially implemented in this
project. A brief description of each class and its main
characteristics will be presented bellow:

1) Encoder - This sensor measures a part's spin
angle around the sensor's axis. The returned value is a tick
count which is the real angle divided by the sensor's
resolution. There are three parameters that can be set up in this
sensor:

 Resolution: minimum spin angle the sensor can recognize
[radians]
Noise: it is the maximum amplitude of the noise [% of the
truth measure]. The returned value containing the number
of ticks (NTicks) with noise is then computed through the
following equation:

 ݏ݇ܿ݅ܶܰ ൌ ሺ1 ,݁ݏ݅ሺെ݊݀݊ܽݎ ሻሻ݁ݏ݅݊ ∗ ݏ݇ܿ݅ܶܰ

 Wheel: attach the encoder to its respective wheel. To
perform such set up, one may use ‘W’ followed by the
wheel number as the name of the sensor (e.g. EncoderW1).

The output of this sensor is a Message containing the type
and name of the sensor and the number of ticks:

SEN {Type Encoder} {Name EncoderW1} {Tick NumTicks}

2) Ground truth sensor - This sensor returns
accurate measures of the robots global position and
orientation. Since it does not introduce any noise in its
measures, the output data may be used to verify the
performance of the robots localization algorithms, as well as
for debugging and for testing high level algorithms (e.g.
decision, planning, collaboration). The output of the Ground
truth sensor is a Message with the type and the name of the
sensor, the position and orientation of the robot at a given time
stamp (Timestamp):

SEN {Time Timestamp} {Type GroundTruth} {Name GndTruth}
{Location x,y,z} {Orientation roll,pitch,yaw }

3) Infra-red sensor - The IR sensor class
implements the simulation of Infra-red sensors. This kind of
sensor is used to detect the distance to the closest point
(object) that lies on the line from the sensors position with the
direction of the sensor. A full set up of this sensor includes the
following parameters:

 HiddenSensor: Boolean variable used to indicate whether
the sensor will be visually.

 MaxRange: maximum distance in which the sensor can
detect objects [m].

 ScanInterval: time difference between two consecutive
readings.

 Noise: it is the maximum amplitude of the noise [% of the
truth measure]. The returned value containing the range
distance (d) with noise is then computed through the
following equation:

 ݀ ൌ ൫1 ,݁ݏ݅ሺെ݊݀݊ܽݎ ሻ൯݀݁ݏ݅݊

Figure 4. Classes of sensors in USARSim

 bWithTimeStamp: Boolean variable used to indicate
whether the time stamp in the output message is included.

A typical IR Sensor output Message includes information
about the time stamp (Timestamp), the type of the sensor
(Range), its name (IR1) and the measured distance
(DistanceValue):

SEN {Time Timestamp} {Type Range} {Name IR1 Range
DistanceValue}

4) Sonar - Sonar sensor class was designed to
implement the simulation of ultrasound sensors, following the
same concept used to implement it in previous versions of
USARSim (as a series of IR sensors). Thus, data is obtained
by rotating the sensor step by step (resolution) from the start to
the end direction (field of view). Finally, the lowest from the
data gathered by the sensor is then returned in the output
Message. This presents the folowing parameters:

 HiddenSensor: Boolean variable used to indicate whether
the sensor will be visible.

 MaxRange: maximum distance in which the sensor can
detect objects [m].

 ScanInterval: time difference between two consecutive
readings [s].

 Resolution: number of radians of each step [rad].
 Noise: it is the maximum amplitude of the noise [% of the

truth value measured]. The returned value containing the
range distance (d) with noise is then computed through (2).

 ScanFov: sensor’s field of view [rad].
 bWithTimeStamp: Boolean variable used to whether

include or not the time stamp in the output message.

The output message of sonar sensors contains information
about the time stamp (Timestamp), the type of the sensor
(Range), its name (Sonar1) and the measured distance
(DistanceValue):

SEN {Time Timestamp} {Type Range} {Name Sonar1 Range
DistanceValue}

Proceedings of the 11th International Conference on Mobile Robots and Competitions IST TU Lisbon Congress Center

Page 106 Robotica 2011 is organized under the IEEE Robotics and Automation Society Technical Co-Sponsorship

Figure 5. GUI of the robot controller

IV. PRELIMINAR EXPERIMENTS

In order to run initial experiments of communication
between the control agent and the simulator we have used a
robotic platform released with the USARSim simulator. P3AT
is a skid-steer robot with 50cm x 49cm x 26cm of body size
and four 21.5cm diameter wheels from ActivMedia Robotic.
With proper configuration, the robot was provided with a
camera and a set of eight sonars and eight infrared sensors
assembled in a semi-circular ring around its body. In order
receive the feedback from the simulator, a simple Graphic User
Interface (GUI) was developed (Fig. 5). Through that interface,
it is possible to create the robot in USARSim, parse the
message containing the measures of each sensor and steer the
vehicle in the simulated world.

V. CONCLUSIONS

In this paper, we have discussed the benefits of simulation
in robotics and presented the requirements and characteristics
for the simulation of intelligent wheelchairs – more specifically
to the prototype developed in IntellWheels project. A set of
seven criteria were proposed to assist in the evaluation of
robotics simulators.

The results of the evaluation have demonstrated that both
RDS and Webots lack on supporting Object Pascal. Also, RDS
has a severe limitation in the development of new sensors, and
Webots has high monetary cost associated. USARSim, on the
other hand, has demonstrated a superior physics engine and a
validation of several sensors and actuators. Thus, USARSim
was selected for simulating the IntellWheels prototype. Once
some important classes of sensors had not been ported from the
previous version of the USARSim simulator, we have
implemented one class for simulating the ultra-sound sensors
and one class for simulating the infra-red sensors. Preliminary
results were achieved using a P3AT platform configured with
eight sonars and infrared sensors. A robot controller was
developed in order to create and steer the robot in the simulated
world and to parse the messages received from simulator.

As future work, we intend to design a realistic model of the
wheelchair and of a cluttered environment. In addition, with the
integration of the agents that control the IntellWheels
prototype, we intend to create mixed reality environments.
Drills of patients with real wheelchairs in virtual scenarios
could be performed with increased realism, eliminating the risk
of injuries and the stress of steering the wheelchair in the real
environment. Furthermore, mixed reality experiments would

make it possible to test the real IW in several scenarios (e.g.
narrow corridors, crowded places, moving objects) in a safe
(free of collisions with real objects, reducing the risk damaging
the equipment) and inexpensive way (reduced time demanded
to create scenarios, and minimum infra-structure cost).

ACKNOLEDGMENT

The first author would like to acknowledge FCT (grant
SFRH/BD/60727/2009) for his PhD scholarship funding. This
work was supported by the Fundação para a Ciência e
Tecnologia through the project "INTELLWHEELS -
Intelligent Wheelchair with Flexible Multimodal Interface"
(grant ref. FCT/RIPD/ADA/109636/2009).

REFERENCES

[1] R. C. Simpson, "Smart wheelchairs: A literature review,"
Journal of Rehabilitation Research and Development, vol.
42, pp. 423-435, 2005. ISSN:0748-7711 .

[2] M. Friedmann, K. Petersen and O. von Stryk, "Simulation of
multi-robot teams with flexible level of detail," Simulation,
modeling, and programming for autonomous robots. vol.
5325: Springer, 2008, pp. 29-40. ISSN:0302-9743 .

[3] C. Pepper, S. Balakirsky and C. Scrapper, "Robot simulation
physics validation," Workshop on Performance Metrics for
Intelligent Systems, Washington DC,USA, pp.97-104, 2007.

[4] J. Craighead, R. Murphy, J. Burke, B. Goldiez, "A survey of
commercial & open source unmanned vehicle simulators,"
in IEEE Int. Conf. Robotics and Automation, Rome, Italy,
pp. 852-857, 10-14 April 2007. ISBN: 1-4244-0601-3.

[5] R. A. M. Braga, M. Petry, A. P. Moreira and L. P. Reis,
"Concept and design of the intellwheels development
platform for intelligent wheelchairs," in Informatics in
control, automation and robotics. vol. 37, Springer-Verlag,
2009, pp. 191-203. ISSN:978-3-642-00270-0.

[6] R. A. M. Braga, M. Petry, A. P. Moreira and L. P. Reis,
"Intellwheels - a development platform for intelligent
wheelchairs for disabled people," in Int. Conf. Informatics in
Control, Automation and Robotics, Funchal, PORTUGAL,
pp. 115-121, May 11-15 2008. ISBN: 978-989-8111-31-9.

[7] S. Carpin, M. Lewis, J. Wang, S. Balakirsky, C. Scrapper,
"Usarsim: A robot simulator for research and education,"
IEEE Int. Conf. Robotics and Automation - ICRA, Rome,
Italy, pp. 1400-1405, April 2007. ISBN: 1-4244-0601-3

[8] B. Balaguer, S. Balakirsky, S. Carpin, M. Lewis and C.
Scrapper, "Usarsim: A validated simulator for research in
robotics and automation," Workshop on "Robot simulators:
available software, scientific applications and future trends",
at IEEE/RSJ IROS 2008

[9] Microsoft. Microsoft robotics developer studio 2008,
http://www.Microsoft.Com/robotics/.(Consulted on January
2011)

 [10] O. Michel, "Webotstm: Professional mobile robot
simulation," International Journal of Advanced Robotics
Systems, vol. 1, pp. 39-42, 2004

[11] Gazebo. Gazebo user manual,available at
http://playerstage.Sourceforge.Net/index.Php?Src=doc.
(Consulted on January 2011)

[12] M. Ma, M. McNeill, S. McDonough, J. Crosbie and L.
Oliver, "Physics fidelity of virtual reality in motor
rehabilitation," the Physics Fidelity of Virtual Reality in
Motor Rehabilitation, Laval, France, pp. 35-41, April 2006

[13] M. Lewis, J. Wang and S. Hughes, "Usarsim: Simulation for
the study of human-robot interaction," Journal of Cognitive
Engineering and Decision Making, vol. 1, pp. 98-120, 2007

[14] J. Wang. (2005, october). Usarsim v2.0.2 - a game based
simulation of the nist reference arenas,
http://sourceforge.Net/projects/usarsim.(Consulted on
February 2011)

Proceedings of the 11th International Conference on Mobile Robots and Competitions IST TU Lisbon Congress Center

Page 107 Robotica 2011 is organized under the IEEE Robotics and Automation Society Technical Co-Sponsorship

	Robotica 2011 Proceedings
	Cover
	Organization and Partnership
	Welcome Message
	Committees
	Program
	paper_1
	paper_12
	paper_4
	paper_15
	Introduction
	Differential-Driven Mobile Platform
	Path Following
	Docking Problem
	Conclusions
	Acknowledgments
	References

	paper_25
	paper_10
	paper_20
	paper_8
	paper_21
	paper_3
	paper_5
	paper_26
	paper_27
	paper_22
	paper_7
	paper_18

