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Pólo II, Pinhal de Marrocos, 3030-290 Coimbra, Portugal

2 Department of Informatics Engineering, Faculty of Engineering, University of Porto/LIACC-Artificial Intelligence and
Computer Science Laboratory, Rua Dr. Roberto Frias, 4200-465 Porto, Portugal

3 Department of Information Systems, School of Engineering, University of Minho/LIACC-Artificial Intelligence and Computer,
Science Laboratory, Campus de Azurm, 4800-058 Guimares, Portugal

Correspondence should be addressed to Pedro Henriques Abreu; pha@dei.uc.pt

Received 29 August 2013; Accepted 27 November 2013; Published 27 January 2014

Academic Editors: G. R. Amin, H. Chen, and F. Di Martino

Copyright © 2014 Pedro Henriques Abreu et al.This is an open access article distributed under the Creative Commons Attribution
License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly
cited.

Nowadays, there are many technologies that support location systems involving intrusive and nonintrusive equipment and also
varying in terms of precision, range, and cost. However, the developers some time neglect the noise introduced by these systems,
which prevents these systems from reaching their full potential. Focused on this problem, in this research work a comparison
study between three different filters was performed in order to reduce the noise introduced by a location system based on RFID
UWB technology with an associated error of approximately 18 cm. To achieve this goal, a set of experiments was devised and
executed using a miniature train moving at constant velocity in a scenario with two distinct shapes—linear and oval. Also, this
train was equipped with a varying number of active tags.The obtained results proved that the Kalman Filter achieved better results
when compared to the other two filters. Also, this filter increases the performance of the location system by 15% and 12% for the
linear and oval paths respectively, when using one tag. For a multiple tags and oval shape similar results were obtained (11–13% of
improvement).

1. Introduction

Recognizing the motion pattern of a person or an object in
a dynamic environment is a challenging task that has gained
visibility in recent years. As such, tracking systems became
an interesting research challenge in several areas of expertise,
such as computer science, sports, medicine, simulation or
robotics, and industrial tracks. Usually, these environments
contain several objects (possibly with different motion pat-
terns), which are detected by a tracking system (an introduc-
tion to tracking systems is presented below). Depending on
the tracking system’s nature and the environment where the
system is being used, several problems may arise. One of the
most troublesome and frequent problem is the introduction
of noise in the collected data; for instance, if a vision-based

tracking system is used, parts of the environment may be
occluded at times; if an intrusive tracking system is used,
different materials present in the environmentmay introduce
distortions in the signal, causing noise in the collected data.

Over the years, RFID (Radio Frequency Identification)
technology has been used in a large set of tracking systems
to perform such tasks. Using a group of tags, these systems
are capable of locating an object (human or otherwise) in
an environment using distinct approaches, such as simple
geometrical rules or learning algorithms [1], among others.
NonGaussian noise is normally associated with RFID readers
[2]. To reduce such issue, Particle Filters have been used in
many research works and presented satisfactory results [3, 4].
Unfortunately, these filters still present an import drawback:
their computational costs. Normally, Kalman and Extended
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KalmanFilters are the key to solve those problems concerning
linear [2] and nonlinear motion [5], respectively. However,
one question still remains unanswered: what is the best
approach for an object that executes a hybrid motion (com-
bination of linear and nonlinear motions), which is probably
the most similar to the one carried out by a human? In con-
sequence of that, in this research work, a comparison among
variations of theKalmanFilter (namely, theKalmanFilter, the
Extended Kalman Filter, and the Unscented Kalman Filter,
described below), a known method for noise reduction, was
used having anRFIDUWB(UltrawideBand) tracking system
as the source for the data, with an associated error of less than
20 cm specified by the manufacturer [6] which, at the time
of the experiments, was the best system in the market, when
comparing costs and associated error for systems costing up
to 20.000 Euro. Comparing to other contexts that presented
more than 50 cm of error [5], themajor challenge of this work
is to detect which is the algorithm that is capable of reducing
a 20 cm RFID location system error. For that, both linear and
oval patterns were used to evaluate the performance of the
filters, using an object moving at constant velocity, equipped
with a varying number of tags. Results show that the increase
in the number of tags used in the experiments does not
translate into an inflation of the registered noise. Also, the
KalmanFilter proved to be the best solution for the conducted
experiments.

The rest of this paper is organized as follows. Section 2
describes some works related to the tracking systems area
and Section 3 details themethodology usedwhen conducting
the experiments and the Ubisense location system. Section
4 describes the project architecture and, in Section 5, the
experimental setup is shown. Section 6 details the obtained
results. Finally, Section 7 presents some conclusion regarding
the developed work as well as some lines for future develop-
ments.

2. Literature Review

In literature, there are many generic tracking systems that
emerged over the past few years. These solutions can be
divided in two distinct groups: nonintrusive (where there is
no equipment on the subject) and intrusive (where sensors or
tags are placed on the subject being tracked) [7].

Non-intrusive systems are primarily vision-based sys-
tems, where a varying number of cameras are used in con-
junction with a set of image analysis algorithms to track the
subject. This introduces an additional complexity as well as
higher computational requirements if the tracking is to be
performed in real-time [8, 9]. In some cases, when there
are multiple tracking targets, the visual similarity among
these targets, as well as possible object overlapping situations,
brings forward additional complexities. Some projects in this
area use only one camera for their tracking purposes [10, 11],
while others use multiple cameras [12, 13].

Other sensors, such as infrared, may also be used in
this group, tracking the thermal signature of live subjects
[14]. These techniques have shown promising results in cold
environments such as oceans, where the contrast between

Table 1: Comparison between different tracking technologies.

Technology Features
Cost Accuracy Range Energy consumption

Thermal signature 0 4 1 1
Multicamera 0 4 2 2
GPS 4 3 4 0
IMU 3 2 0 1
Bluetooth 3 1 1 0
Wi-Fi 3 2 2 1
ZigBee 3 3 1 4
RFID 3 2 0 3
RFID UWB 1 4 3 4

environment and subject is higher [15], but have some
problems, namely its use with objects with no recognizable
thermal signature, and also the elevated cost associated with
the required equipment.

Intrusive systems encompass a myriad of technologies
that can be used to locate and track assets, such as GPS
(Global Positioning System) [16], RFID [17] and RFID
UWB [18], ZigBee [19], IMU (Inertial Measurement Unit)
[20], Wi-Fi [21], or Bluetooth [22], each of which with its
advantages and disadvantages that can make each specific
technology more suitable for specific scenarios.

The RFID UWB technology is based on the earlier
RFID technology, but using a higher frequency band, which
translates into higher localization precision, as well as lower
power consumption on the transmitter, also allowing for
better coverage and coexisting devices in small areas due
to more efficient multiple channel access and interference
mitigation mechanisms [18, 23]. These systems use a number
of receivers and a number of tags, which can be either passive
or active. Passive tags do not possess any internal power
supply and are only detectable up to approximately sixmeters
from the receiver, while active tags have their own internal
power source, offering both reliable detection on a larger
scale and higher resilience to occlusion problems caused by
possible obstacles in the environment, being detectable up to
100 meters from the receiver.

Table 1 presents a comparison between several technolo-
gies, using four performance metrics: cost, accuracy, range,
and energy consumption [24]. Values presented in the table
are in the range of 0 to 4, 4 being the best classification and 0
being the worst classification. It is also important to state that
this comparison table was created according to the collection
of information in three distinct studies [7, 17, 25].

By looking at this table, one can see that, in general terms,
RFID UWB presents better results than the others (even
though its cost is significantly higher than other technologies,
such as GPS or ZigBee). Based on the valuable combination
of accuracy and range, the UWB technology was selected to
perform the experiments, through the use of the Ubisense
Real-time Location Systems (RTLS) (more information avail-
able at http://www.ubisense.net/en/products-and-services/
rtls-products.html); see Section 3.4 for a more detailed
description of this solution.
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3. Used Methodologies and Technologies

In this work, the Ubisense RTLS is used as a location system
and three filters were also used to reduce the system noise.
These filters as well as the Ubisense RTLS are presented
below.

3.1. Kalman Filter. TheKalman Filter (KF) is an optimal esti-
mator that consists on a set of mathematical equations that
infers the state of a discrete-time linear process from indirect,
inaccurate and uncertain observations [26]. It is considered
optimal because, when affected only by white Gaussian noise
(normally distributed withmean zero and standard deviation
𝜎), the KF minimizes the mean square error of the estimated
parameters. The state 𝑥 ∈ 𝑅𝑛 of a discrete-time process is
modeled by the linear stochastic difference equation with a
measure 𝑧 ∈ 𝑅𝑛:

𝑥
𝑘
= 𝐴𝑥
𝑘−1
+ 𝐵𝑢
𝑘−1
+ 𝑤
𝑘−1
,

𝑧
𝑘
= 𝐻𝑥
𝑘
+ V
𝑘
,

(1)

where𝐴 is thematrix that relates the state at the previous time
step to the state at the current step in the absence of noise,𝐵 is
the matrix that relates the optional control input to the state
𝑥,𝐻 is thematrix that relates the state to themeasurement 𝑧

𝑘
,

and 𝑤
𝑘
and V
𝑘
represent the process and measurement noise,

respectively.
The filter response is derived by using a feedback control

that estimates the process state and obtains feedback in the
form of (noisy) measurements.Thus, the filtering process can
be characterized by a cycle of twomain stages, prediction and
correction.

In the prediction stage, the filter projects forward (from
the time step 𝑘 − 1 to step 𝑘) the current state 𝑥

𝑘−1
and the

error covariance 𝑃
𝑘−1
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𝑘
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where𝑄 is thematrix that represents the process noise covari-
ance. To close the loop of the feedback control, the correction
stage first computes the gain matrix 𝐾

𝑘
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the a posteriori error covariance. Next, it incorporates a
new measurement 𝑧

𝑘
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where 𝑅 is the matrix that represents the measurement noise
covariance.

One of the most important limitations of the KF is that
it assumes that the system is linear. Once many practical sys-
tems have nonlinear state update or measurement equations,
a different filtering approach may be required.

3.2. Extended Kalman Filter. One possible approach to deal
with nonlinear systems is the Extended Kalman Filtering
(EKF). The EKF linearizes the state around the current
mean and covariance using the partial derivatives of the
process andmeasurement functions to compute the estimates
for nonlinear relationships [26]. Assuming that the relation
between the current state to previous state is a nonlinear
transition function, it can be approximated using first order
Taylor approximation, the predictor stage for the EKF can be
expressed as:
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(7)

while the corrector stage can be expressed as
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where 𝑓 is a nonlinear function that relates the state at the
previous time step (𝑘 − 1) with the current time step (𝑘),
𝑥
𝑘
is an a posteriori estimate of the state at step 𝑘, 𝐴 is the

Jacobianmatrix of partial derivatives of𝑓with respect to𝑥,𝑊
is the Jacobian matrix of partial derivatives of 𝑓 with respect
to 𝑤,𝐻 is the Jacobian matrix of partial derivatives of ℎ with
respect to𝑥, and𝑉 is the Jacobianmatrix of partial derivatives
of ℎ with respect to V.

EKF, however, presents at least two significant shortcom-
ings. The first-order linearization of the state distribution
only approximates the optimality of Bayes’ rule, and thus
can introduce large errors in the true a posteriori mean
and covariance and lead to suboptimal performance [26].
Another consideration regards to the computation of the
Jacobian matrices, which are nontrivial in most applications
and often lead to significant implementation difficulties [27].

3.3. Unscented Kalman Filter. Systems that are highly nonlin-
ear usually are not well modeled by a first order linearization.
Since such systems cannot be approximated using EKF, the
Unscented Kalman Filter (UKF) was introduced. Similar to
KF and EKF, the UKF also takes advantage of the predictor-
corrector cycle. However, while the EKF approximates the
state of nonlinear systems by simply performing a first-
order linearization of the nonlinear functions, the UKF
addresses this problem by using a deterministic sampling
approach [27, 28]. This sampling technique is known as the
Unscented Transform (UT) and is used pick the minimal
set of sample points (called sigma points) around the mean.
Therefore, UKF algorithm has an additional step beside the
predictor and corrector, which is the selection of 2𝑛+1 sigma
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points (where 𝑛 represent the dimensions of the state space).
These sigma points are then propagated through the non-
linear system, from which the mean and covariance of the
estimate are then recovered. The result is a filter that more
accurately captures the true mean and covariance with no
extra computational complexity. The usage of UT results in
approximations that are accurate to the third order for Gaus-
sian inputs and at least to the second-order for nonGaussian
inputs. The prediction stage, a priori state 𝑥−

𝑘
and the error

covariance 𝑃−
𝑘
can be expressed as
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while the corrector stage can be expressed as
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3.4. Ubisense RTLS. The Ubisense RTLS provides a solution
for asset location in a specific environment using RFID
UWB technology. This solution is composed by a number of
receptors (typically four) and several active tags, which can
be used to track objects.

The receivers of this system are connected to a local
network, in order to communicate with a server computer,
which runs the Ubisense Platform and collects data from all
receivers.The receivers also possess an additional connection,
which is used for synchronization—one receiver is used as a
master and all other receivers synchronize their clocks by it.

The receivers use threemethods to determine the location
of each tag—Time of Arrival (TOA), Time Difference of
Arrival (TDOA), and Angle of Arrival (AOA). In order
to assess the TOA, it is required that tag and receiver be
synchronized; by determining the time it took for the signal

to travel from the tag to the receiver, the distance of the tag
to the receiver can be calculated. When using three receivers,
trilateration of the signal is possible, in order to determine
the location of the tag. TDOA requires at least three receivers
and that they be perfectly synchronized. By determining the
difference between the times at which the signal arrives to
each receiver, and bymeans ofmultilateration, it is possible to
determine the position of the tag. Determining the AOA on
the receiver requires it to contain multiple antennas arranged
in a known configuration, and to be able to determine
the TOA for each of the antennas; by combining all this
information, the angle at which the signal reaches the receiver
can be estimated. An advantage of this method is that the
synchronization between emitter and receiver or among
receivers is not a requirement.

4. Project Description

The architecture of the project was divided into four steps, as
explained below, and following the enumeration in Figure 1.

On step 1, the Ubisense server, which is connected to
the four receivers via a network connection, collects the data
from the tags and saves it to a log file. This log file contains
the location of each tag, which is recorded at a frequency
of 40 samples per second (this frequency may be configured
for lower values, but in this particular case the maximum
possible frequency was chosen to maximize the amount of
data collected).

In this step, two different experiments were conducted—
one using a linear maneuver and another using an oval one.
These maneuvers were attained by using a miniature train
moving at a constant speed over a set of tracks disposed in
either a linear or oval shape, as can be seen in Figure 2(a).
This allows for the position of the train to be determined at
eachmoment with great accuracy.The track was located in an
empty roomof approximately 12×8m,with aminimumpres-
ence of foreign objects (thus attempting to reduce noise in
the environment). Also, and in the case of the oval maneuver,
the number of tags used varied between 1 and 4. Figure 2(b)
shows the train used in the experiments, with one tag visible
on top of it. For each experimental setup, 20 independent
tests were performed, as to dissolve the influence of possible
outliers. Also, and since the miniature train is powered
by batteries, these were replaced every 20 experiments (as
to avoid a deterioration of battery performance between
experiments).

On step 2, a small application has been developed, as to
process the log files generated in step 1, producing files with
the data in a standardized format, in this case using a user-
defined XML dialect. The format of the produced file follows
the Schema specification shown in Listing 1, containing data
for a number of tags. Each line of the log contains information
regarding one active tag, namely, the identification of the
tag and its position (given by three-dimensional Cartesian
coordinates) at a given moment.

On step 3, three different filters are applied to each log
file, producing new log files. These filters are the Kalman,
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Figure 1: Global project architecture.

<?xml version=“1.0” encoding=“UTF-8”?>
<xs:schema xmlns:xs=“http://www.w3.org/2001/XMLSchema”>
<xs:element name=“Tags”>
<xs:complexType>
<xs:sequence>
<xs:element ref=“Tag” maxOccurs=“unbounded”/>

</xs:sequence>
</xs:complexType>

</xs:element>
<xs:element name=“Tag”>
<xs:complexType>
<xs:attribute name=“z” type=“xs:decimal” use=“required”/>
<xs:attribute name=“y” type=“xs:decimal” use=“required”/>
<xs:attribute name=“x” type=“xs:decimal” use=“required”/>
<xs:attribute name=“Second” type=“xs:int” use=“required”/>
<xs:attribute name=“Name” type=“xs:string” use=“required”/>
<xs:attribute name=“Minute” type=“xs:int” use=“required”/>
<xs:attribute name=“Millisecond” type=“xs:int” use=“required”/>
<xs:attribute name=“Hour” type=“xs:int” use=“required”/>
<xs:attribute name=“Date” type=“xs:date” use=“required”/>

</xs:complexType>
</xs:element>

</xs:schema>

Listing 1: Log file schema.

Extended Kalman, and Unscented Kalman filters, already
described in Section 3.1. These filters were developed using
MATLAB (more information about MATLAB at http://
www.mathworks.com/products/matlab/), and exported to a
net component using MATLAB Builder NE (more infor-
mation available at http://www.mathworks.com/products/
netbuilder/).

On step 4, the original log file and the filtered log files are
compared using two different metrics—mean squared error
(MSE), and maximum squared error (MaxSE). Equation (11)
illustrates the MSE metric, where 𝑋 represents a given tag,
̂
𝑓 represents the tag location at a given instant 𝑖 as given by

the log file, and 𝑓 represents the actual tag location at a given
instant 𝑖:

1

𝑛

𝑛

∑

𝑖=1

(
̂
𝑓 (𝑋
𝑖
) − 𝑓 (𝑋

𝑖
))

2

. (11)

In the scenario of multiple tags being used to track the
train (as illustrated in Figure 3(a) for the case of four tags),
an additional preprocessing step is performed, determining
the centroid of the tags being used. This process is depicted
in Figure 3(b), where two distinct types of variables are used,
𝑀
𝑖
represents the tag position as present in the log files 𝑅

𝑖

represents the actual tag position; additionally,𝑅
𝑐
is the actual
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(a) Track environment

(b) Train used in the experiments

Figure 2: Track and train used in the experiments.

centroid of the tags being used. In this approach, the filters
were applied to each tag, and only in step 4 is the centroid
determined, based on the filtered𝑀

𝑖
values.

5. Experimental Setup

The Ubisense configuration is a two-step process that can be
divided into hardware installation and calibration.

During the experiments, the simplest system configura-
tion for hardware installation was chosen, which consists of
monitoring an open rectangular area (clear of obstructions)
of 12 × 8m. The four sensors were mounted at the corners
of the area, at 1.6 meters high, and pointed towards the
floor in the middle of the space, in order to maximize the
line of sight across the tracked space. Once positioned, it
becomes necessary to connect the sensors to the Ubisense
Server Platform by connecting the sensor network cable to
the Ethernet switch. The Ethernet cable provides the sensors
not only the ability to communicate with the server, but also
the power source required for their operation. At this point,
one sensor is configured as a master (and the other three as
slaves), by connecting a temporal synchronization cable from
each slave to a synchronization port on the master sensor.

As for the calibration process, two steps are required.
The first step consists in assigning an IP address of the
sensors using a standard DHCP sever. However, since the
switch used in the experiments did not provide with a DHCP
server, a free ware application (information regarding the
used system can be found at http://www.dhcpserver.de/)

(a) Train with four tags

x

y

M3(xm3, ym3)

M2(xm2, ym2)

M1(xm1, ym1)

M4(xm4, ym4)

R2(x2, y2)

R3(x3, y3)

R4(x4, y4)

R1(x1, y1)
Rc(xc, yc)

(b) Diagram for four tags

Figure 3: Train and diagram with four tags.

was used to implement this feature. Next, the sensors need
to be added to the server software platform using their
MAC addresses. Sensors are them configured by assigning
their (𝑥, 𝑦, 𝑧) position (according to the Cartesian coordinate
system) with at least a 5 cm accuracy and a rough estimate
of its roll, pitch and yaw. The second step consists on the
calibration of the background noise present in the cell. To
perform this operation, tags may be disabled and the noise
measured using the Incident Power Plot application. From
that, it is possible to determine themost convenient threshold
to distinguish between valid UWB readings generated by
tags and the background noise generated by external sources.
Another important calibration step is the calibration of the
sensors’ orientation and the cable offsets. This calibration
is performed by positioning one tag at a known location
in the center of the cell, and informing the system of its
measured (𝑥, 𝑦, 𝑧) position. Next, the system acquires a
number of samples and computes the optimal values based on
the information previously provided, suggesting the required
corrections in the angles and cable offsets. Once all the
sensors are calibrated, the system setup is completed.
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Table 2: Linear path results.

MSE MaxSE
Raw measurements 0.04103 0.07838
Kalman Filter 0.03452 0.04538
Extended Kalman Filter 0.03757 0.06629
Unscented Kalman Filter 0.03758 0.06631

Table 3: Oval path results (1 tag).

MSE MaxSE
Raw measurements 0.04971 0.08629
Kalman Filter 0.04372 0.07974
Extended Kalman Filter 0.04816 0.08494
Unscented Kalman Filter 0.04824 0.08475

6. Results

The results are shown first for the linear path and then for the
oval path. As to supply theKalman filters with the co-variance
matrix necessary for its operation, the covariance of the error
of the system was determined, using 100 samples for a tag at
a known position, and a value of 0.000607m was obtained.

6.1. Linear Path. For the linear path, and asmentioned before,
a straight track (with a length of 4m) was laid out on the
room used for the tests and one tag was secured to the
top of the miniature train. The train was positioned on an
initial short acceleration track that connects to the 4m track,
as to allow the train to accelerate to standard cruise speed
when it reaches the track. The experiment was repeated 20
times, and the results are condensed in Table 2, which shows
the asverage values for the mean squared error (MSE) and
the maximum squared error (MaxSE) for the experiments
(measured in meters).

As can be seen from Table 2 and its graphical represen-
tation, shown in Figures 4(a) and 4(b), the Kalman Filter
introduces an improvement of more than 15% on the MSE,
while both the Extended and Unscented Kalman Filters
improve results by little less than 8.5%. Regarding theMaxSE,
the Kalman Filter enhances the results by 42%, while both the
Extended and Unscented Kalman Filters enhance results by
only 15.4%.

6.2. Oval Path. For the oval path, and as mentioned above,
experiments were conducted both with one tag and multiple
tags (the results for multiple tags are shown below). In both
cases, an oval track (with a perimeter of approximately 10m)
was laid out on the room used for the tests. As to allow the
train to accelerate to standard cruise speed, it was placed
behind the initial measurement point. The experiment was
repeated 20 times, and the results are condensed in Table 3,
which shows the Average values for the MSE and MaxSE.

As can be seen from Table 3 and its graphical represen-
tation, shown in Figures 5 and 6 (results shown alongside
results for multiple tags), the Kalman Filter introduces an
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Figure 4: MSE and MaxSE for linear path.

Table 4: MSE andMaxSE for one and five tags using Kalman Filter.

One tag Five tags
MSE 0.03107 0.03208
MaxSE 0.04173 0.04313

improvement of almost 12% on the MSE, and an improve-
ment of 7.6% for the MaxSE. The Extended and Unscented
Kalman Filters both obtained aproximately 3% improvment
for MSE and 1.5% and 1.7% for MaxSE, resp.).

6.3. Multiple Tags. Before conducting the experiments with
multiple tags, a simple experiment was performed as to
determine whether or not having multiple active tags in
close proximity would cause signal interference that would
increase the error of the system. As illustrated in Table 4,
experiments were performed with one and five tags, with
results showing that there is no significant difference in using
one of five stationary tags.

Experiments were conducted with two, three, and four
tags using the oval path (for 20 times). These results are
condensed in Table 5, with the values ofMSE andMaxSE. For
all tags scenario, Kalman Filter performances better than the
others. Concerning to MSE, KF improves results by 11–13%
while the other filters improve results by 3–4.5%.

RegardingMaxSE, KF improves results by 7-8% while the
other two filters improve results by 1.5–3%.
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Table 5: Oval path results with multiple tags.

2 tags 3 tags 4 tags
MSE MaxSE MSE MaxSE MSE MaxSE

Raw 0.05064 0.08734 0.05193 0.08841 0.05284 0.0897
KF 0.04492 0.08091 0.04518 0.08173 0.04592 0.08269
EKF 0.04891 0.08602 0.04973 0.08698 0.05046 0.08713
UKF 0.04907 0.08553 0.04985 0.08619 0.05053 0.08697
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Figure 5: Oval path MSE.
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Figure 6: Oval path MaxSE.

7. Conclusions and Future Work

A set of experiments was devised and executed in order to
assess the efficiency of Kalman Filters in reducing noise from
a location system based on RFID UWB (in this case, the
Ubisense RTLS commercial platform was used). For that,
experiences involving a miniature train capable of traveling
along a path with constant velocity were performed and a
comparison study between three variants of Kalman Filters
was conducted. It is important to note that the used location
systemhas a low associated error; approximately 18 cm,which
turns this research work into an even more challenging
project.

Experiments with a linear path show that all variants of
Kalman Filters improve the results by reducing the noise
introduced by the location system, with the Kalman Filter
performing better than the other filters (15%, when compared
to the other two, with improvements of about 8.5%).

In what concerns to the oval experimental scenario and
using a varying number of tags, the Kalman filter continues
to improve the results and the other two used filters present
marginal improvements.

Regarding future research lines, one possible direction
consists of extending the comparison study to a larger test
area with multiple shapes. This requires the acquisition of
extra equipment, namely, additional train tracks. Also, it
would be very useful if a miniature train with velocity control
capabilities was acquired turning the experimental process
more flexible and dynamic.

Another possible direction is to execute the comparison
study using objects with nonconstant velocity and traveling
along a non-preestablished path. This will allow simulating
many different real live situations where such a location
system could be of use. One such example is the practice
of sports (e.g., soccer) where during the game, a coach is
a recipient of a huge amount of complex information and
because of that tools that can provide automatic soccer
performance indicators occupy a major role. However, in
this reality it is common that the ball (the most important
object in the game) has many occlusion situations, which
makes it difficult for a nonintrusive location system (viz.
image based) to keep track of it during the entire length of
the game. Experiments in an embryonic stage suggest that
the RFID UWB can constitute a solution for this kind of
sport situations—during these experiments a tag was placed
inside a ball traveling along a predefined trajectory in a noisy
environment (with many occluding objects), and the results
did not show any loss of signal.

Finally, in a more technical level, the developed filter
framework can be included in the Ubisense RTLS platform
providing a real time object location tracking with reduced
noise.
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